Photonics Laboratory, ETH Zürich, Zürich, Switzerland.
Quantum Center, ETH Zurich, Zürich, Switzerland.
Nature. 2021 Jul;595(7867):378-382. doi: 10.1038/s41586-021-03617-w. Epub 2021 Jul 14.
Tests of quantum mechanics on a macroscopic scale require extreme control over mechanical motion and its decoherence. Quantum control of mechanical motion has been achieved by engineering the radiation-pressure coupling between a micromechanical oscillator and the electromagnetic field in a resonator. Furthermore, measurement-based feedback control relying on cavity-enhanced detection schemes has been used to cool micromechanical oscillators to their quantum ground states. In contrast to mechanically tethered systems, optically levitated nanoparticles are particularly promising candidates for matter-wave experiments with massive objects, since their trapping potential is fully controllable. Here we optically levitate a femtogram (10 grams) dielectric particle in cryogenic free space, which suppresses thermal effects sufficiently to make the measurement backaction the dominant decoherence mechanism. With an efficient quantum measurement, we exert quantum control over the dynamics of the particle. We cool its centre-of-mass motion by measurement-based feedback to an average occupancy of 0.65 motional quanta, corresponding to a state purity of 0.43. The absence of an optical resonator and its bandwidth limitations holds promise to transfer the full quantum control available for electromagnetic fields to a mechanical system. Together with the fact that the optical trapping potential is highly controllable, our experimental platform offers a route to investigating quantum mechanics at macroscopic scales.
在宏观尺度上对量子力学进行测试需要对机械运动及其退相干进行极端控制。通过设计微机械振荡器与谐振腔中电磁场之间的辐射压力耦合,可以实现机械运动的量子控制。此外,基于腔增强检测方案的基于测量的反馈控制已被用于将微机械振荡器冷却到其量子基态。与机械束缚系统相比,光学悬浮纳米粒子是具有大量物体的物质波实验的特别有前途的候选者,因为它们的捕获势完全可控制。在这里,我们在低温真空中光学悬浮一个飞克(10 克)介电粒子,这足以抑制热效应,使测量反作用成为主要的退相干机制。通过有效的量子测量,我们对粒子的动力学施加量子控制。我们通过基于测量的反馈将其质心运动冷却到平均占据 0.65 个运动量子的程度,对应于 0.43 的状态纯度。不存在光学谐振器及其带宽限制有望将电磁场所提供的全量子控制转移到机械系统。此外,光学捕获势高度可控,我们的实验平台为研究宏观尺度上的量子力学提供了一条途径。