Lian Wenqian, Wang Sheng-Tao, Lu Sirui, Huang Yuanyuan, Wang Fei, Yuan Xinxing, Zhang Wengang, Ouyang Xiaolong, Wang Xin, Huang Xianzhi, He Li, Chang Xiuying, Deng Dong-Ling, Duan Luming
Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China.
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev Lett. 2019 May 31;122(21):210503. doi: 10.1103/PhysRevLett.122.210503.
We report an experimental demonstration of a machine learning approach to identify exotic topological phases, with a focus on the three-dimensional chiral topological insulators. We show that the convolutional neural networks-a class of deep feed-forward artificial neural networks with widespread applications in machine learning-can be trained to successfully identify different topological phases protected by chiral symmetry from experimental raw data generated with a solid-state quantum simulator. Our results explicitly showcase the exceptional power of machine learning in the experimental detection of topological phases, which paves a way to study rich topological phenomena with the machine learning toolbox.
我们报告了一种用于识别奇异拓扑相的机器学习方法的实验演示,重点关注三维手性拓扑绝缘体。我们表明,卷积神经网络——一类在机器学习中有着广泛应用的深度前馈人工神经网络——可以通过训练,从固态量子模拟器生成的实验原始数据中成功识别由手性对称性保护的不同拓扑相。我们的结果明确展示了机器学习在拓扑相实验检测中的非凡能力,这为使用机器学习工具箱研究丰富的拓扑现象铺平了道路。