Suppr超能文献

用于机器学习的量子回路拓扑结构

Quantum Loop Topography for Machine Learning.

作者信息

Zhang Yi, Kim Eun-Ah

机构信息

Department of Physics, Cornell University, Ithaca, New York 14853, USA and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA.

出版信息

Phys Rev Lett. 2017 May 26;118(21):216401. doi: 10.1103/PhysRevLett.118.216401. Epub 2017 May 22.

Abstract

Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems, training neural networks to identify quantum phases is a nontrivial challenge. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of nonlocal properties. Here, we introduce quantum loop topography (QLT): a procedure of constructing a multidimensional image from the "sample" Hamiltonian or wave function by evaluating two-point operators that form loops at independent Monte Carlo steps. The loop configuration is guided by the characteristic response for defining the phase, which is Hall conductivity for the cases at hand. Feeding QLT to a fully connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish the Chern insulator and the fractional Chern insulator from trivial insulators with high fidelity. In addition to establishing the first case of obtaining a phase diagram with a topological quantum phase transition with machine learning, the perspective of bridging traditional condensed matter theory with machine learning will be broadly valuable.

摘要

尽管在利用机器学习研究量子多体系统方面的兴趣迅速增长,但训练神经网络来识别量子相是一项具有挑战性的任务。关键挑战在于如何有效地从多体哈密顿量或波函数中提取基本信息,并将这些信息转化为可输入神经网络的图像。当针对拓扑相时,这项任务变得尤为具有挑战性,因为拓扑相是根据非局部性质定义的。在此,我们引入量子回路拓扑学(QLT):通过评估在独立蒙特卡罗步骤中形成回路的两点算符,从“样本”哈密顿量或波函数构建多维图像的过程。回路配置由定义相的特征响应引导,对于手头的情况而言是霍尔电导率。将QLT输入具有单个隐藏层的全连接神经网络,我们证明该架构可以有效地训练,以高保真度区分陈绝缘体和分数陈绝缘体与平凡绝缘体。除了建立通过机器学习获得具有拓扑量子相变的相图的首个案例外,将传统凝聚态物质理论与机器学习相联系的观点将具有广泛的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验