Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147-2408, USA; email:
Department of Psychology and Neuroscience and Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Canada B3H 4R2.
Annu Rev Cell Dev Biol. 2019 Oct 6;35:637-653. doi: 10.1146/annurev-cellbio-100818-125444. Epub 2019 Jul 8.
The brain's synaptic networks endow an animal with powerfully adaptive biological behavior. Maps of such synaptic circuits densely reconstructed in those model brains that can be examined and manipulated by genetic means offer the best prospect for understanding the underlying biological bases of behavior. That prospect is now technologically feasible and a scientifically enabling possibility in neurobiology, much as genomics has been in molecular biology and genetics. In , two major advances are in electron microscopic technology, using focused ion beam-scanning electron microscopy (FIB-SEM) milling to capture and align digital images, and in computer-aided reconstruction of neuron morphologies. The last decade has witnessed enormous progress in detailed knowledge of the actual synaptic circuits formed by real neurons. Advances in various brain regions that heralded identification of the motion-sensing circuits in the optic lobe are now extending to other brain regions, with the prospect of encompassing the fly's entire nervous system, both brain and ventral nerve cord.
大脑的突触网络赋予动物强大的适应性生物行为。通过遗传手段对这些模型大脑中密集重建的突触回路图谱进行检查和操作,为理解行为的潜在生物学基础提供了最佳前景。目前,这一前景在技术上是可行的,也是神经生物学中的一种科学可行的可能性,就像基因组学在分子生物学和遗传学中的作用一样。在这篇论文中,有两个主要的进展是在电子显微镜技术方面,使用聚焦离子束扫描电子显微镜(FIB-SEM)铣削来捕获和对齐数字图像,以及在神经元形态的计算机辅助重建方面。过去十年中,我们对真实神经元形成的实际突触回路有了详尽的了解,取得了巨大的进展。在预示着对光叶运动感知回路进行识别的各个脑区的进展,现在正在扩展到其他脑区,有望涵盖果蝇的整个神经系统,包括大脑和腹神经索。