Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2.
Adv Genet. 2012;80:99-151. doi: 10.1016/B978-0-12-404742-6.00003-X.
Fly and vertebrate nervous systems share many organizational features, such as layers, columns and glomeruli, and utilize similar synaptic components, such as ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly's connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental mechanisms of neural computation that underlie behavior.
飞行动物和脊椎动物的神经系统具有许多组织特征,如层、柱和肾小球,并且利用类似的突触成分,如离子通道和受体。两者也表现出类似的网络特征。最近的技术进步,特别是在电子显微镜方面,现在使我们能够确定突触回路,并逐个细胞地识别途径,作为飞行动物连接组的一部分。遗传工具提供了识别突触成分的手段,以及记录和操纵神经元活动的手段,为连接组添加了功能。这篇综述讨论了这些新兴功能连接组学领域的技术进步,对每个领域进行了预测,并确定了将结构连接组学与分子生物学和突触生理学联系起来的挑战,从而确定了行为背后的神经计算的基本机制。