Suppr超能文献

纤维球成像的数据获取和分析优化。

Optimization of data acquisition and analysis for fiber ball imaging.

机构信息

Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.

Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.

出版信息

Neuroimage. 2019 Oct 15;200:690-703. doi: 10.1016/j.neuroimage.2019.07.005. Epub 2019 Jul 5.

Abstract

The inverse Funk transform of high angular resolution diffusion imaging (HARDI) data provides an estimate for the fiber orientation density function (fODF) in white matter (WM). Since the inverse Funk transform is a straightforward linear transformation, this technique, referred to as fiber ball imaging (FBI), offers a practical means of calculating the fODF that avoids the need for a response function or nonlinear numerical fitting. Nevertheless, the accuracy of FBI depends on both the choice of b-value and the number of diffusion-encoding directions used to acquire the HARDI data. To inform the design of optimal scan protocols for its implementation, FBI predictions are investigated here with in vivo data from healthy adult volunteers acquired at 3 T for b-values spanning 1000 to 10,000 s/mm, for diffusion-encoding directions varying in number from 30 to 256 and for TE ranging from 90 to 120 ms. Our results suggest b-values above 4000 s/mm with at least 64 diffusion-encoding directions are adequate to achieve reasonable accuracy with FBI for calculating axon-specific diffusion measures and for performing WM fiber tractography (WMFT).

摘要

高角度分辨率扩散成像(HARDI)数据的逆 Funk 变换提供了脑白质(WM)中纤维方向密度函数(fODF)的估计值。由于逆 Funk 变换是一种直接的线性变换,因此这种称为纤维球成像(FBI)的技术提供了一种实用的计算 fODF 的方法,避免了响应函数或非线性数值拟合的需要。然而,FBI 的准确性取决于 b 值的选择和用于获取 HARDI 数据的扩散编码方向的数量。为了为其实施设计最佳扫描协议提供信息,这里使用在 3T 下从健康成年志愿者获得的体内数据来研究 FBI 预测,b 值范围为 1000 至 10,000 s/mm,扩散编码方向数量从 30 到 256,TE 从 90 到 120 ms。我们的结果表明,使用至少 64 个扩散编码方向的高于 4000 s/mm 的 b 值足以实现 FBI 计算轴突特异性扩散测量值和进行 WM 纤维追踪(WMFT)的合理准确性。

相似文献

1
Optimization of data acquisition and analysis for fiber ball imaging.纤维球成像的数据获取和分析优化。
Neuroimage. 2019 Oct 15;200:690-703. doi: 10.1016/j.neuroimage.2019.07.005. Epub 2019 Jul 5.
3
Modeling white matter microstructure with fiber ball imaging.纤维球成像技术对脑白质微观结构的建模研究。
Neuroimage. 2018 Aug 1;176:11-21. doi: 10.1016/j.neuroimage.2018.04.025. Epub 2018 Apr 13.
4
Fiber ball imaging.纤维球成像
Neuroimage. 2016 Jan 1;124(Pt A):824-833. doi: 10.1016/j.neuroimage.2015.09.049. Epub 2015 Oct 1.
9
Undersampled single-shell to MSMT fODF reconstruction using CNN-based ODE solver.基于 CNN 的 ODE 求解器的欠采样单壳到 MSMT fODF 重建。
Comput Methods Programs Biomed. 2023 Mar;230:107339. doi: 10.1016/j.cmpb.2023.107339. Epub 2023 Jan 6.

引用本文的文献

3
Epileptic brain network mechanisms and neuroimaging techniques for the brain network.癫痫脑网络机制及脑网络神经成像技术
Neural Regen Res. 2024 Dec 1;19(12):2637-2648. doi: 10.4103/1673-5374.391307. Epub 2023 Dec 21.

本文引用的文献

1
Intra-axonal diffusivity in brain white matter.脑白质内轴突弥散性。
Neuroimage. 2019 Apr 1;189:543-550. doi: 10.1016/j.neuroimage.2019.01.015. Epub 2019 Jan 16.
4
On the scaling behavior of water diffusion in human brain white matter.人类大脑白质中水扩散的标度行为。
Neuroimage. 2019 Jan 15;185:379-387. doi: 10.1016/j.neuroimage.2018.09.075. Epub 2018 Oct 4.
6
Modeling white matter microstructure with fiber ball imaging.纤维球成像技术对脑白质微观结构的建模研究。
Neuroimage. 2018 Aug 1;176:11-21. doi: 10.1016/j.neuroimage.2018.04.025. Epub 2018 Apr 13.
8
On modeling.关于建模。
Magn Reson Med. 2018 Jun;79(6):3172-3193. doi: 10.1002/mrm.27101. Epub 2018 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验