Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
Neuroimage. 2018 Jul 1;174:518-538. doi: 10.1016/j.neuroimage.2018.03.006. Epub 2018 Mar 12.
We develop a general analytical and numerical framework for estimating intra- and extra-neurite water fractions and diffusion coefficients, as well as neurite orientational dispersion, in each imaging voxel. By employing a set of rotational invariants and their expansion in the powers of diffusion weighting, we analytically uncover the nontrivial topology of the parameter estimation landscape, showing that multiple branches of parameters describe the measurement almost equally well, with only one of them corresponding to the biophysical reality. A comprehensive acquisition shows that the branch choice varies across the brain. Our framework reveals hidden degeneracies in MRI parameter estimation for neuronal tissue, provides microstructural and orientational maps in the whole brain without constraints or priors, and connects modern biophysical modeling with clinical MRI.
我们开发了一个通用的分析和数值框架,用于估计每个成像体素中的神经元内和神经元外水分数和扩散系数,以及神经元取向离散度。通过使用一组旋转不变量及其在扩散加权幂次上的展开,我们从分析上揭示了参数估计景观的复杂拓扑结构,表明参数的多个分支几乎同样很好地描述了测量结果,其中只有一个分支与生物物理现实相对应。全面的采集结果表明,这种分支选择在整个大脑中是变化的。我们的框架揭示了神经元组织中 MRI 参数估计的隐藏退化,提供了整个大脑的微观结构和取向图谱,无需约束或先验信息,将现代生物物理模型与临床 MRI 联系起来。