Trace Element Speciation Laboratory (TESLA), Dept. of Chemistry, University of Aberdeen, AB24 3UE, United Kingdom.
Trace Element Speciation Laboratory (TESLA), Dept. of Chemistry, University of Aberdeen, AB24 3UE, United Kingdom.
J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Aug 15;1124:356-365. doi: 10.1016/j.jchromb.2019.06.029. Epub 2019 Jun 24.
Engineered nanoparticles such as iron oxide (FeO) nanoparticles (IONPs) offer several benefits in nanomedicine, notably as contrast agents in magnetic resonance imaging (MRI). Ferumoxytol, a suspension of IONPs (with a manufacturer's reported particle diameter of 27 nm-30 nm) was characterized as a standard by spiking into rat blood plasma and cell fractions. Nanoparticle separation, and characterisation was investigated with asymmetric flow field-flow fractionation (AF4) coupled online to ultraviolet-visible spectroscopy (UV-VIS), multi-angle light scattering (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) detectors; also with single particle inductively coupled plasma mass spectrometry (spICP-MS) and transmission electron microscopy (TEM). MALS signal of pristine Ferumoxytol indicated radii of gyration (R) between 15 and 28 nm for the Fe-containing fraction and 30-75 nm for the non-Fe fraction. IONPs spiked into blood plasma indicated a polydisperse distribution between 40 nm - 120 nm suggesting matrix-induced size alterations. Spiking of the IONPs into cells showed a shift in ICP-MS Fe signal to 15 min, however the MALS signal was undetected within the Fe containing fraction of the IONPs suggesting NP loss due to membrane-particle attraction. spICP-MS analysis of IONPs spiked in rat plasma suggested the release of Fe-containing colloids into plasma causing an increase in diameter of IONPs to 52 ± 0.8 nm; whereas no major variation in particle size and distribution of the IONPs spiked in cell fractions was observed (33.2 ± 2.0 nm) suggesting non-alteration of the NP Fe core. A complementary application of microscopic, light scattering, and mass spectrometry techniques for the characterisation of NPs in challenging biological matrices like blood has been demonstrated.
工程纳米粒子,如氧化铁(FeO)纳米粒子(IONPs),在纳米医学中有多种应用,特别是作为磁共振成像(MRI)中的对比剂。Ferumoxytol 是一种 IONPs 的混悬液(据制造商报道,其粒径为 27nm-30nm),已被特征化为标准物质,通过加入大鼠血浆和细胞部分进行测试。通过不对称流场流分离(AF4)与紫外-可见光谱(UV-VIS)、多角度光散射(MALS)和电感耦合等离子体质谱(ICP-MS)检测器在线联用,对纳米粒子的分离和特征进行了研究;还使用了单颗粒电感耦合等离子体质谱(spICP-MS)和透射电子显微镜(TEM)。原始 Ferumoxytol 的 MALS 信号表明,含铁部分的回转半径(R)在 15nm-28nm 之间,非铁部分在 30nm-75nm 之间。加入血浆的 IONPs 表明存在 40nm-120nm 之间的多分散分布,这表明基质诱导了尺寸变化。将 IONPs 加入细胞中,ICP-MS 的 Fe 信号在 15min 时发生转移,但 MALS 信号在 IONPs 的含铁部分未被检测到,这表明由于膜-粒子吸引力导致 NP 损失。对加入大鼠血浆中的 IONPs 进行 spICP-MS 分析表明,Fe 含有胶体释放到血浆中,导致 IONPs 的直径增加到 52nm±0.8nm;而在细胞部分中加入 IONPs 后,粒径和分布没有明显变化(33.2nm±2.0nm),这表明 NP 的 Fe 核没有发生变化。该研究证明了,在像血液这样具有挑战性的生物基质中,使用微观、光散射和质谱技术对 NPs 进行特征分析是一种有效的互补方法。