Department of Chemistry, New Jersey City University, Jersey City, NJ 07305-1596, USA.
Int J Mol Sci. 2019 Jul 7;20(13):3335. doi: 10.3390/ijms20133335.
Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) exerts its regulatory roles on several critical cellular pathways through protein-protein interactions depending on its phosphorylation states. It can either inhibit the extracellular signal-regulated kinase (ERK) activities when it is dephosphorylated or block the assembly of death-inducing signaling complex (DISC) and the subsequent activation of apoptotic initiator, caspase-8, when it is phosphorylated. Due to the important roles of PEA-15 in regulating these pathways that lead to opposite cellular outcomes (cell proliferation vs. cell death), we proposed a phosphostasis (phosphorylation homeostasis) model, in which the phosphorylation states of the protein are vigorously controlled and regulated to maintain a delicate balance. The phosphostasis gives rise to the protective cellular functions of PEA-15 to preserve optimum cellular conditions. In this article, using advanced multidimensional nuclear magnetic resonance (NMR) techniques combined with a novel chemical shift (CS)-Rosetta algorithm for de novo protein structural determination, we report a novel conformation of PEA-15 death-effector domain (DED) upon interacting with ERK2. This new conformation is modulated by the irregularly structured C-terminal tail when it first recognizes and binds to ERK2 at the d-peptide recruitment site (DRS) in an allosteric manner, and is facilitated by the rearrangement of the surface electrostatic and hydrogen-bonding interactions on the DED. In this ERK2-bound conformation, three of the six helices (α2, α3, and α4) comprising the DED reorient substantially in comparison to the free-form structure, exposing key residues on the other three helices that directly interact with ERK2 at the DEF-docking site (docking site for ERK, FxF) and the activation loop. Additionally, we provide evidence that the phosphorylation of the C-terminal tail leads to a distinct conformation of DED, allowing efficient interactions with Fas-associated death domain (FADD) protein at the DISC. Our results substantiate the allosteric regulatory roles of the C-terminal tail in modulating DED conformation and facilitating protein-protein interactions of PEA-15.
富含星形胶质细胞的磷蛋白 15kDa(PEA-15)通过其磷酸化状态下的蛋白-蛋白相互作用,对几个关键的细胞途径发挥调节作用。当去磷酸化时,它可以抑制细胞外信号调节激酶(ERK)的活性;当磷酸化时,它可以阻止死亡诱导信号复合物(DISC)的组装和随后凋亡起始子 caspase-8 的激活。由于 PEA-15 在调节这些导致相反细胞结果(细胞增殖与细胞死亡)的途径中起着重要作用,我们提出了一个磷酸化状态(磷酸化平衡)模型,其中蛋白质的磷酸化状态被积极控制和调节,以保持微妙的平衡。磷酸化状态导致 PEA-15 的保护细胞功能,以保持最佳的细胞状态。在本文中,我们使用先进的多维核磁共振(NMR)技术结合一种新的化学位移(CS)-Rosetta 算法用于从头蛋白质结构测定,报告了 PEA-15 死亡效应结构域(DED)与 ERK2 相互作用时的一种新构象。这种新构象由无规则结构的 C 端尾巴调制,当它首先以变构方式识别并结合到 ERK2 的 d-肽募集位点(DRS)时,以及通过 DED 表面静电和氢键相互作用的重新排列而得到促进。在这种 ERK2 结合的构象中,DED 的六个螺旋中的三个(α2、α3 和α4)与自由形式的结构相比,发生了很大的重定向,暴露出与 ERK2 在 DEF 对接位点(ERK 的对接位点,FxF)和激活环直接相互作用的关键残基。此外,我们提供了证据表明,C 端尾巴的磷酸化导致 DED 形成独特的构象,允许与 Fas 相关死亡结构域(FADD)蛋白在 DISC 中有效相互作用。我们的结果证实了 C 端尾巴在调节 DED 构象和促进 PEA-15 蛋白-蛋白相互作用中的变构调节作用。