Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178, 67037 Strasbourg, France.
J Biol Chem. 2019 Aug 23;294(34):12766-12778. doi: 10.1074/jbc.RA119.009464. Epub 2019 Jul 8.
The chloroquine resistance transporter PfCRT of the human malaria parasite confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on biology and, in particular, the drug resistance-conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in that phosphorylates Ser-33 of PfCRT.
人类疟疾寄生虫 PfCRT 的氯喹耐药转运蛋白赋予其对前一线抗疟药物氯喹的耐药性,并调节其对广泛的喹啉和类似喹啉化合物的反应性。PfCRT 通过磷酸化、棕榈酰化和可能的泛素化进行翻译后修饰。然而,这些翻译后修饰对生物学的影响,特别是 PfCRT 的耐药性赋予活性,仍然难以捉摸。在这里,我们确认了氯喹耐药株 Dd2 的 PfCRT 中的 Ser-33 和 Ser-411 发生磷酸化,并表明激酶抑制剂可以增强药物敏感性。使用 CRISPR/Cas9 基因组编辑在寄生虫中生成基因工程 PfCRT 变体,我们进一步表明,与亲本株 Dd2 相比,将 Ser-33 替换为丙氨酸可使氯喹和奎宁的耐药性降低约 50%,而磷酸模拟氨基酸天冬氨酸可完全和谷氨酸可部分恢复氯喹/奎宁的耐药性。在寄生虫和 PfCRT 表达卵母细胞中进行的转运研究将 Ser-33 的磷酸模拟取代与增加的转运速度联系起来。我们的数据与 Ser-33 的磷酸化缓解 PfCRT 内的自动抑制分子内相互作用一致,导致药物转运活性增强。我们的发现进一步阐明了 PfCRT 的功能,并表明通过靶向磷酸化 PfCRT 的 Ser-33 的激酶,氯喹可以重新评估为抗疟药物。