Zhou Yuan, Li Mucong, Liu Wei, Sankin Georgy, Luo Jianwen, Zhong Pei, Yao Junjie
Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
Optica. 2019 Feb;6(2):198-205. doi: 10.1364/OPTICA.6.000198. Epub 2019 Feb 14.
Temperature mapping is essential in many biomedical studies and interventions to precisely control the tissue's thermal conditions for optimal treatment efficiency and minimal side effects. Based on the Grüneisen parameter's temperature dependence, photoacoustic (PA) imaging can provide relative temperature measurement, but it has been traditionally challenging to measure absolute temperatures without knowing the baseline temperature, especially in deep tissues with unknown optical and acoustic properties. Here, we report a new thermal-energy-memory-based photoacoustic thermometry (TEMPT). By illuminating the tissue with a burst of nanosecond laser pulses, TEMPT exploits the temperature dependence of the thermal energy lingering, which is probed by the corresponding PA signals acquired within the thermal confinement. A self-normalized ratiometric measurement cancels out temperature-irrelevant quantities and estimates the Grüneisen parameter. The temperature can then be evaluated, given the tissue's temperature-dependent Grüneisen parameter, mass density, and specific heat capacity. Unlike the conventional PA thermometry, TEMPT does not require the knowledge of tissue's baseline temperature, nor the optical properties. We have developed a mathematical model to describe the temperature dependence in TEMPT. We have demonstrated the feasibility of the temperature evaluation on tissue phantoms at 1.5 cm depth within a clinically relevant temperature range. Finally, as proof-of-concept, we applied TEMPT for temperature mapping during focused ultrasound treatment in mice at 2 mm depth. As a generic temperature mapping method, TEMPT is expected to find applications in thermotherapy of cancers on small animal models.
在许多生物医学研究和干预中,温度测绘至关重要,它能精确控制组织的热条件,以实现最佳治疗效果并减少副作用。基于格林艾森参数与温度的依赖关系,光声(PA)成像可提供相对温度测量,但传统上,在不知道基线温度的情况下测量绝对温度具有挑战性,尤其是在光学和声学特性未知的深层组织中。在此,我们报告一种基于热能记忆的新型光声测温法(TEMPT)。通过用一阵纳秒激光脉冲照射组织,TEMPT利用了残留热能的温度依赖性,这可通过在热约束范围内采集的相应PA信号进行探测。自归一化比率测量消除了与温度无关的量,并估算出格林艾森参数。然后,给定组织的与温度相关的格林艾森参数、质量密度和比热容,就可以评估温度。与传统的PA测温法不同,TEMPT不需要知道组织的基线温度,也不需要知道光学特性。我们已经开发了一个数学模型来描述TEMPT中的温度依赖性。我们已经证明了在临床相关温度范围内对1.5厘米深处的组织仿体进行温度评估的可行性。最后,作为概念验证,我们在小鼠2毫米深处的聚焦超声治疗过程中应用TEMPT进行温度测绘。作为一种通用的温度测绘方法,TEMPT有望在小动物模型的癌症热疗中找到应用。