Suppr超能文献

大数据在精准医学药物研发中的应用:最新进展

Use of big data in drug development for precision medicine: an update.

作者信息

Qian Tongqi, Zhu Shijia, Hoshida Yujin

机构信息

Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Expert Rev Precis Med Drug Dev. 2019;4(3):189-200. doi: 10.1080/23808993.2019.1617632. Epub 2019 May 20.

Abstract

INTRODUCTION

Big-data-driven drug development resources and methodologies have been evolving with ever-expanding data from large-scale biological experiments, clinical trials, and medical records from participants in data collection initiatives. The enrichment of biological- and clinical-context-specific large-scale data has enabled computational inference more relevant to real-world biomedical research, particularly identification of therapeutic targets and drugs for specific diseases and clinical scenarios.

AREAS COVERED

Here we overview recent progresses made in the fields: new big-data-driven approach to therapeutic target discovery, candidate drug prioritization, inference of clinical toxicity, and machine-learning methods in drug discovery.

EXPERT OPINION

In the near future, much larger volumes and complex datasets for precision medicine will be generated, e.g., individual and longitudinal multi-omic, and direct-to-consumer datasets. Closer collaborations between experts with different backgrounds would also be required to better translate analytic results into prognosis and treatment in the clinical practice. Meanwhile, cloud computing with protected patient privacy would become more routine analytic practice to fill the gaps within data integration along with the advent of big-data. To conclude, integration of multitudes of data generated for each individual along with techniques tailored for big-data analytics may eventually enable us to achieve precision medicine.

摘要

引言

随着来自大规模生物学实验、临床试验以及数据收集计划参与者的医疗记录的数据不断扩展,大数据驱动的药物开发资源和方法也在不断发展。生物和临床背景特定的大规模数据的丰富,使得与现实世界生物医学研究更相关的计算推断成为可能,特别是针对特定疾病和临床场景的治疗靶点和药物的识别。

涵盖领域

在此,我们概述了该领域最近取得的进展:用于治疗靶点发现的新的大数据驱动方法、候选药物优先级排序、临床毒性推断以及药物发现中的机器学习方法。

专家观点

在不久的将来,将生成用于精准医学的规模大得多且更复杂的数据集,例如个体和纵向多组学数据集以及直接面向消费者的数据集。还需要不同背景的专家之间进行更紧密的合作,以便更好地将分析结果转化为临床实践中的预后和治疗。同时,随着大数据的出现,在保护患者隐私的情况下进行云计算将成为更常规的分析实践,以填补数据整合中的空白。总之,整合为每个个体生成的大量数据以及为大数据分析量身定制的技术,最终可能使我们实现精准医学。

相似文献

1
Use of big data in drug development for precision medicine: an update.
Expert Rev Precis Med Drug Dev. 2019;4(3):189-200. doi: 10.1080/23808993.2019.1617632. Epub 2019 May 20.
2
Use of big data in drug development for precision medicine.
Expert Rev Precis Med Drug Dev. 2016;1(3):245-253. doi: 10.1080/23808993.2016.1174062. Epub 2016 Apr 28.
3
Data-Driven Methods for Advancing Precision Oncology.
Curr Pharmacol Rep. 2018 Apr;4(2):145-156. doi: 10.1007/s40495-018-0127-4. Epub 2018 Mar 6.
4
Clinical trial design: Past, present, and future in the context of big data and precision medicine.
Cancer. 2020 Nov 15;126(22):4838-4846. doi: 10.1002/cncr.33205. Epub 2020 Sep 15.
6
Big data analytics in medical engineering and healthcare: methods, advances and challenges.
J Med Eng Technol. 2020 Aug;44(6):267-283. doi: 10.1080/03091902.2020.1769758. Epub 2020 Jun 5.
7
Big data analytics and machine learning in hematology: Transformative insights, applications and challenges.
Medicine (Baltimore). 2025 Mar 7;104(10):e41766. doi: 10.1097/MD.0000000000041766.
8
Explainable biology for improved therapies in precision medicine: AI is not enough.
Best Pract Res Clin Rheumatol. 2024 Dec;38(4):102006. doi: 10.1016/j.berh.2024.102006. Epub 2024 Sep 26.
9
From Big Data to Precision Medicine.
Front Med (Lausanne). 2019 Mar 1;6:34. doi: 10.3389/fmed.2019.00034. eCollection 2019.

引用本文的文献

2
Big data for neuroscience in the context of predictive, preventive, and personalized medicine.
EPMA J. 2024 Dec 23;16(1):17-35. doi: 10.1007/s13167-024-00393-1. eCollection 2025 Mar.
3
4
Identifying and overcoming challenges in the EMA's qualification of novel methodologies: a two-year review.
Front Pharmacol. 2024 Nov 14;15:1470908. doi: 10.3389/fphar.2024.1470908. eCollection 2024.
6
Investigating the therapeutic potential of hesperidin targeting CRISP2 in intervertebral disc degeneration and cancer risk mitigation.
Front Pharmacol. 2024 Aug 29;15:1447152. doi: 10.3389/fphar.2024.1447152. eCollection 2024.
10

本文引用的文献

1
Big Data Approaches for Modeling Response and Resistance to Cancer Drugs.
Annu Rev Biomed Data Sci. 2018 Jul;1:1-27. doi: 10.1146/annurev-biodatasci-080917-013350. Epub 2018 Apr 25.
2
Drug repurposing: progress, challenges and recommendations.
Nat Rev Drug Discov. 2019 Jan;18(1):41-58. doi: 10.1038/nrd.2018.168. Epub 2018 Oct 12.
3
Review of Drug Repositioning Approaches and Resources.
Int J Biol Sci. 2018 Jul 13;14(10):1232-1244. doi: 10.7150/ijbs.24612. eCollection 2018.
4
Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts.
Front Chem. 2018 Feb 20;6:30. doi: 10.3389/fchem.2018.00030. eCollection 2018.
5
Cloud computing for genomic data analysis and collaboration.
Nat Rev Genet. 2018 Apr;19(4):208-219. doi: 10.1038/nrg.2017.113. Epub 2018 Jan 30.
6
Breast cancer: The translation of big genomic data to cancer precision medicine.
Cancer Sci. 2018 Mar;109(3):497-506. doi: 10.1111/cas.13463. Epub 2017 Dec 30.
7
A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.
Cell. 2017 Nov 30;171(6):1437-1452.e17. doi: 10.1016/j.cell.2017.10.049.
8
The Influence of Big (Clinical) Data and Genomics on Precision Medicine and Drug Development.
Clin Pharmacol Ther. 2018 Mar;103(3):409-418. doi: 10.1002/cpt.951. Epub 2018 Feb 5.
9
Computational drug repositioning for rare diseases in the era of precision medicine.
Drug Discov Today. 2018 Feb;23(2):382-394. doi: 10.1016/j.drudis.2017.10.009. Epub 2017 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验