Qian Tongqi, Zhu Shijia, Hoshida Yujin
Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Expert Rev Precis Med Drug Dev. 2019;4(3):189-200. doi: 10.1080/23808993.2019.1617632. Epub 2019 May 20.
Big-data-driven drug development resources and methodologies have been evolving with ever-expanding data from large-scale biological experiments, clinical trials, and medical records from participants in data collection initiatives. The enrichment of biological- and clinical-context-specific large-scale data has enabled computational inference more relevant to real-world biomedical research, particularly identification of therapeutic targets and drugs for specific diseases and clinical scenarios.
Here we overview recent progresses made in the fields: new big-data-driven approach to therapeutic target discovery, candidate drug prioritization, inference of clinical toxicity, and machine-learning methods in drug discovery.
In the near future, much larger volumes and complex datasets for precision medicine will be generated, e.g., individual and longitudinal multi-omic, and direct-to-consumer datasets. Closer collaborations between experts with different backgrounds would also be required to better translate analytic results into prognosis and treatment in the clinical practice. Meanwhile, cloud computing with protected patient privacy would become more routine analytic practice to fill the gaps within data integration along with the advent of big-data. To conclude, integration of multitudes of data generated for each individual along with techniques tailored for big-data analytics may eventually enable us to achieve precision medicine.
随着来自大规模生物学实验、临床试验以及数据收集计划参与者的医疗记录的数据不断扩展,大数据驱动的药物开发资源和方法也在不断发展。生物和临床背景特定的大规模数据的丰富,使得与现实世界生物医学研究更相关的计算推断成为可能,特别是针对特定疾病和临床场景的治疗靶点和药物的识别。
在此,我们概述了该领域最近取得的进展:用于治疗靶点发现的新的大数据驱动方法、候选药物优先级排序、临床毒性推断以及药物发现中的机器学习方法。
在不久的将来,将生成用于精准医学的规模大得多且更复杂的数据集,例如个体和纵向多组学数据集以及直接面向消费者的数据集。还需要不同背景的专家之间进行更紧密的合作,以便更好地将分析结果转化为临床实践中的预后和治疗。同时,随着大数据的出现,在保护患者隐私的情况下进行云计算将成为更常规的分析实践,以填补数据整合中的空白。总之,整合为每个个体生成的大量数据以及为大数据分析量身定制的技术,最终可能使我们实现精准医学。