B CUBE Center of Molecular Bioengineering, CMCB, TU Dresden, Am Tatzberg 41, 01307 Dresden, Germany.
Commun Biol. 2019 Jun 28;2:245. doi: 10.1038/s42003-019-0436-0. eCollection 2019.
The species-specifically patterned biosilica cell walls of diatoms are paradigms for biological mineral morphogenesis and the evolution of lightweight materials with exceptional mechanical performance. Biosilica formation is a membrane-mediated process that occurs in intracellular compartments, termed silica deposition vesicles (SDVs). Silicanin-1 (Sin1) is a highly conserved protein of the SDV membrane, but its role in biosilica formation has remained elusive. Here we generate knockout mutants of the diatom . Although the mutants grow normally, they exhibit reduced biosilica content and morphological aberrations, which drastically compromise the strength and stiffness of their cell walls. These results identify as essential for the biogenesis of mechanically robust diatom cell walls, thus providing an explanation for the conservation of this gene throughout the diatom realm. This insight paves the way for genetic engineering of silica architectures with desired structures and mechanical performance.
硅藻物种特异性图案化的生物硅细胞壁是生物矿化形态发生和具有卓越机械性能的轻质材料进化的典范。生物硅形成是一种发生在细胞内隔室(称为硅沉积囊泡 (SDV))中的膜介导过程。硅烯蛋白-1 (Sin1) 是 SDV 膜的高度保守蛋白,但它在生物硅形成中的作用仍然难以捉摸。在这里,我们生成了硅藻 的 敲除突变体。尽管突变体正常生长,但它们表现出生物硅含量降低和形态异常,这极大地削弱了它们细胞壁的强度和刚性。这些结果表明 对于机械坚固的硅藻细胞壁的生物发生是必不可少的,从而为该基因在整个硅藻领域的保守提供了一个解释。这一见解为具有所需结构和机械性能的硅架构的基因工程铺平了道路。