Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC-IMAG (UMR 5525 UGA-CNRS), Université Grenoble Alpes, Faculté de Médecine, Domaine de la Merci, 38706, La Tronche Cedex, France.
Laboratoire de Toxicologie Professionnelle et Environnementale, Service de Biochimie Biologie moléculaire Toxicologie Environnementale, IBP, CHU Grenoble Alpes, 38043, Grenoble Cedex 09, France.
Arch Toxicol. 2019 Aug;93(8):2165-2184. doi: 10.1007/s00204-019-02504-8. Epub 2019 Jul 8.
Combined exposure to complex mixtures of polycyclic aromatic hydrocarbons (PAHs) and ultraviolet radiation (UVR) is suspected to enhance PAH skin permeability and skin cancer risk depending on PAH bioactivation. The impact of PAH mixtures (exposure dose, composition, and complexity) and UVR was assessed for PAH cutaneous absorption and metabolism using realistic exposure conditions and human skin explants. PAH complex mixtures were extracted from the industrial products coal tar pitch (CTP-I) and petroleum coke (PC-I). The synthetic mixture (CTP-S) was identically reconstituted using PAH standards. The applied dose was adjusted to 1 (PC-I, CTP-I) or 10 nmol (CTP-I, CTP-S) of benzo[a]pyrene (B[a]P). Unmetabolized PAHs were recovered from the skin surface, skin and medium, and then quantified by HPLC-fluorescence detection. PAH metabolites were collected from the medium and analyzed by GC-MS/MS. B[a]P and PAH penetration was lower for the highest B[a]P dose, industrial mixtures, and CTP-I compared to PC-I. Skin irradiation increased PAH penetration only for CTP-I. PAH uptake was poorly influenced by the different experimental conditions. PAH metabolism markedly decreased in the application of mixtures, leading to unmetabolized PAH accumulation in human skin. PAH metabolism was similar between CTP-I and PC-I, but was lower for the highest dose and the industrial mixtures, suggesting a saturation of xenobiotic metabolizing enzymes, as confirmed in a time-course study. UVR strongly inhibited all PAH metabolism. Altogether, these results underline the necessity to consider the reality of human exposure (PAH complex mixtures and UVR) during in vitro experiments to properly estimate skin absorption and metabolism.
多环芳烃 (PAH) 和紫外线辐射 (UVR) 的复合暴露被怀疑会增强 PAH 的皮肤通透性并增加皮肤癌风险,具体取决于 PAH 的生物活化作用。本研究采用现实暴露条件和人体皮肤外植体,评估了 PAH 混合物(暴露剂量、组成和复杂性)和 UVR 对 PAH 皮肤吸收和代谢的影响。从工业产品煤焦油沥青 (CTP-I) 和石油焦 (PC-I) 中提取 PAH 复杂混合物。使用 PAH 标准物质,对合成混合物 (CTP-S) 进行了相同的重建。应用剂量调整为 1 (PC-I、CTP-I) 或 10 nmol (CTP-I、CTP-S) 的苯并[a]芘 (B[a]P)。未代谢的 PAHs 从皮肤表面、皮肤和培养基中回收,然后通过 HPLC-荧光检测进行定量。从培养基中收集 PAH 代谢物,并通过 GC-MS/MS 进行分析。与 PC-I 相比,高剂量 B[a]P、工业混合物和 CTP-I 导致 B[a]P 和 PAH 穿透率降低。皮肤辐射仅增加 CTP-I 中的 PAH 穿透率。不同实验条件对 PAH 摄取的影响很小。混合物的应用显著降低了 PAH 的代谢,导致未代谢的 PAH 在人体皮肤中的积累。CTP-I 和 PC-I 之间的 PAH 代谢相似,但高剂量和工业混合物的代谢率较低,这表明外源性代谢酶的饱和,这在时间过程研究中得到了证实。UVR 强烈抑制了所有 PAH 代谢。总之,这些结果强调了在体外实验中需要考虑人类暴露的现实(PAH 复杂混合物和 UVR),以正确估计皮肤吸收和代谢。