Suppr超能文献

肌动蛋白束的显著结构转变是由其初始极性、马达活性、交联和丝束的 treadmilling 驱动的。

Remarkable structural transformations of actin bundles are driven by their initial polarity, motor activity, crosslinking, and filament treadmilling.

机构信息

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America.

Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2019 Jul 9;15(7):e1007156. doi: 10.1371/journal.pcbi.1007156. eCollection 2019 Jul.

Abstract

Bundled actin structures play a key role in maintaining cellular shape, in aiding force transmission to and from extracellular substrates, and in affecting cellular motility. Recent studies have also brought to light new details on stress generation, force transmission and contractility of actin bundles. In this work, we are primarily interested in the question of what determines the stability of actin bundles and what network geometries do unstable bundles eventually transition to. To address this problem, we used the MEDYAN mechano-chemical force field, modeling several micron-long actin bundles in 3D, while accounting for a comprehensive set of chemical, mechanical and transport processes. We developed a hierarchical clustering algorithm for classification of the different long time scale morphologies in our study. Our main finding is that initially unipolar bundles are significantly more stable compared with an apolar initial configuration. Filaments within the latter bundles slide easily with respect to each other due to myosin activity, producing a loose network that can be subsequently severely distorted. At high myosin concentrations, a morphological transition to aster-like geometries was observed. We also investigated how actin treadmilling rates influence bundle dynamics, and found that enhanced treadmilling leads to network fragmentation and disintegration, while this process is opposed by myosin and crosslinking activities. Interestingly, treadmilling bundles with an initial apolar geometry eventually evolve to a whole gamut of network morphologies based on relative positions of filament ends, such as sarcomere-like organization. We found that apolar bundles show a remarkable sensitivity to environmental conditions, which may be important in enabling rapid cytoskeletal structural reorganization and adaptation in response to intracellular and extracellular cues.

摘要

成束肌动蛋白结构在维持细胞形状、辅助细胞内外基质之间的力传递以及影响细胞运动方面起着关键作用。最近的研究还揭示了肌动蛋白束产生力、传递力和收缩性的新细节。在这项工作中,我们主要关注的问题是是什么决定了肌动蛋白束的稳定性,以及不稳定的束最终会过渡到什么网络几何形状。为了解决这个问题,我们使用了 MEDYAN 机械化学力场,在 3D 中模拟了几个微米长的肌动蛋白束,同时考虑了一整套化学、机械和运输过程。我们开发了一种层次聚类算法,用于对我们研究中的不同长时间尺度形态进行分类。我们的主要发现是,最初的单极束与非极性初始构型相比,稳定性显著提高。由于肌球蛋白的活性,后者束内的纤维很容易相互滑动,产生一个松散的网络,随后可以严重变形。在高肌球蛋白浓度下,观察到向星状几何形状的形态转变。我们还研究了肌动蛋白 treadmilling 速率如何影响束的动力学,发现增强的 treadmilling 导致网络碎片化和解体,而肌球蛋白和交联活性则反对这一过程。有趣的是,具有初始非极性几何形状的 treadmilling 束最终会根据纤维末端的相对位置演变成一系列基于相对位置的网络形态,例如肌节样组织。我们发现非极性束对环境条件具有显著的敏感性,这可能对于快速的细胞骨架结构重组和适应细胞内和细胞外信号非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca82/6615854/e5e350630c0a/pcbi.1007156.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验