The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom. Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London WC1 6BT, United Kingdom.
Phys Biol. 2019 Apr 23;16(4):046004. doi: 10.1088/1478-3975/ab0fb1.
Active networks composed of filaments and motor proteins can self-organize into a variety of architectures. Computer simulations in two or three spatial dimensions and including or omitting steric interactions between filaments can be used to model active networks. Here we examine how these modelling choices affect the state space of network self-organization. We compare the networks generated by different models of a system of dynamic microtubules and microtubule-crosslinking motors. We find that a thin 3D model that includes steric interactions between filaments is the most versatile, capturing a variety of network states observed in recent experiments. In contrast, 2D models either with or without steric interactions which prohibit microtubule crossings can produce some, but not all, observed network states. Our results provide guidelines for the most appropriate choice of model for the study of different network types and elucidate mechanisms of active network organization.
由纤维丝和动力蛋白组成的活性网络可以自我组织成多种结构。在二维或三维空间中进行的计算机模拟可以包括或排除纤维丝之间的空间位阻相互作用,从而对活性网络进行建模。在这里,我们研究了这些建模选择如何影响网络自组织的状态空间。我们比较了不同动态微管和微管交联马达系统模型生成的网络。我们发现,一个包含纤维丝之间空间位阻相互作用的薄的 3D 模型是最通用的,它可以捕获最近实验中观察到的各种网络状态。相比之下,具有或不具有禁止微管交叉的空间位阻相互作用的 2D 模型只能产生一些而不是所有观察到的网络状态。我们的结果为研究不同网络类型的最合适模型选择提供了指导,并阐明了活性网络组织的机制。