Institute for Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany.
Project group Bioresources, Animal Venomics, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35392 Gießen, Germany.
Gigascience. 2019 Jul 1;8(7). doi: 10.1093/gigascience/giz081.
Venoms and the toxins they contain represent molecular adaptations that have evolved on numerous occasions throughout the animal kingdom. However, the processes that shape venom protein evolution are poorly understood because of the scarcity of whole-genome data available for comparative analyses of venomous species.
We performed a broad comparative toxicogenomic analysis to gain insight into the genomic mechanisms of venom evolution in robber flies (Asilidae). We first sequenced a high-quality draft genome of the hymenopteran hunting robber fly Dasypogon diadema, analysed its venom by a combined proteotranscriptomic approach, and compared our results with recently described robber fly venoms to assess the general composition and major components of asilid venom. We then applied a comparative genomics approach, based on 1 additional asilid genome, 10 high-quality dipteran genomes, and 2 lepidopteran outgroup genomes, to reveal the evolutionary mechanisms and origins of identified venom proteins in robber flies.
While homologues were identified for 15 of 30 predominant venom protein in the non-asilid genomes, the remaining 15 highly expressed venom proteins appear to be unique to robber flies. Our results reveal that the venom of D. diadema likely evolves in a multimodal fashion comprising (i) neofunctionalization after gene duplication, (ii) expression-dependent co-option of proteins, and (iii) asilid lineage-specific orphan genes with enigmatic origin. The role of such orphan genes is currently being disputed in evolutionary genomics but has not been discussed in the context of toxin evolution. Our results display an unexpected dynamic venom evolution in asilid insects, which contrasts the findings of the only other insect toxicogenomic evolutionary analysis, in parasitoid wasps (Hymenoptera), where toxin evolution is dominated by single gene co-option. These findings underpin the significance of further genomic studies to cover more neglected lineages of venomous taxa and to understand the importance of orphan genes as possible drivers for venom evolution.
毒液及其所含毒素代表了在动物王国的许多场合进化而来的分子适应。然而,由于可用于比较毒液物种的全基因组数据稀缺,毒液蛋白进化的过程仍知之甚少。
我们进行了广泛的比较毒理基因组学分析,以深入了解掠夺性蝇(Asilidae)毒液进化的基因组机制。我们首先对膜翅目捕食性掠夺蝇Dasypogon diadema 进行了高质量的基因组草图测序,通过一种组合的蛋白质组学方法对其毒液进行了分析,并将我们的结果与最近描述的掠夺蝇毒液进行了比较,以评估 asilid 毒液的一般组成和主要成分。然后,我们应用了一种比较基因组学方法,基于 1 个额外的 asilid 基因组、10 个高质量的双翅目基因组和 2 个鳞翅目外群基因组,揭示了掠夺蝇毒液中鉴定出的毒液蛋白的进化机制和起源。
虽然在非 asilid 基因组中鉴定出了 30 种主要毒液蛋白中的 15 种的同源物,但其余 15 种高表达的毒液蛋白似乎是掠夺蝇所特有的。我们的研究结果表明,D. diadema 的毒液可能以多种方式进化,包括(i)基因复制后的新功能化,(ii)依赖表达的蛋白质共选择,以及(iii)具有神秘起源的 asilid 谱系特异性孤儿基因。在进化基因组学中,这种孤儿基因的作用目前存在争议,但尚未在毒素进化的背景下进行讨论。我们的研究结果显示了 asilid 昆虫中出乎意料的动态毒液进化,与唯一其他昆虫毒理基因组进化分析(膜翅目寄生蜂)形成对比,后者的毒素进化主要由单个基因共选择驱动。这些发现强调了进一步进行基因组研究的重要性,以涵盖更多被忽视的毒液分类群,并了解孤儿基因作为毒液进化的潜在驱动因素的重要性。