双翅目昆虫的新型杀手锏:盗虻(食虫虻科,双翅目)中具有神经毒性成分的节肢动物非典型毒液的进化。
A Dipteran's Novel Sucker Punch: Evolution of Arthropod Atypical Venom with a Neurotoxic Component in Robber Flies (Asilidae, Diptera).
机构信息
Institute for Biology, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany.
Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany.
出版信息
Toxins (Basel). 2018 Jan 5;10(1):29. doi: 10.3390/toxins10010029.
Predatory robber flies (Diptera, Asilidae) have been suspected to be venomous due to their ability to overpower well-defended prey. However, details of their venom composition and toxin arsenal remained unknown. Here, we provide a detailed characterization of the venom system of robber flies through the application of comparative transcriptomics, proteomics and functional morphology. Our results reveal asilid venoms to be dominated by peptides and non-enzymatic proteins, and that the majority of components in the crude venom is represented by just ten toxin families, which we have named Asilidin1-10. Contrary to what might be expected for a liquid-feeding predator, the venoms of robber flies appear to be rich in novel peptides, rather than enzymes with a putative pre-digestive role. The novelty of these peptides suggests that the robber fly venom system evolved independently from hematophagous dipterans and other pancrustaceans. Indeed, six Asilidins match no other venom proteins, while three represent known examples of peptide scaffolds convergently recruited to a toxic function. Of these, members of Asilidin1 closely resemble cysteine inhibitor knot peptides (ICK), of which neurotoxic variants occur in cone snails, assassin bugs, scorpions and spiders. Synthesis of one of these putative ICKs, U-Asilidin₁-Mar1a, followed by toxicity assays against an ecologically relevant prey model revealed that one of these likely plays a role as a neurotoxin involved in the immobilization of prey. Our results are fundamental to address these insights further and to understand processes that drive venom evolution in dipterans as well as other arthropods.
掠夺性盗虻(双翅目,盗虻科)由于其能够制服有良好防御能力的猎物而被怀疑具有毒性。然而,它们的毒液成分和毒素库的细节仍然未知。在这里,我们通过比较转录组学、蛋白质组学和功能形态学,对盗虻的毒液系统进行了详细的描述。我们的结果表明,盗虻的毒液主要由肽和非酶蛋白组成,粗毒液中的大多数成分由仅 10 个毒素家族组成,我们将其命名为 Asilidin1-10。与人们可能预期的液体食性捕食者不同,盗虻的毒液似乎富含新型肽,而不是具有潜在预消化作用的酶。这些肽的新颖性表明,盗虻的毒液系统是独立于吸血双翅目和其他甲壳类动物进化而来的。事实上,有 6 种 Asilidins 与其他毒液蛋白没有匹配,而 3 种代表了已知的肽支架趋同招募到毒性功能的例子。其中,Asilidin1 的成员与半胱氨酸抑制剂结肽 (ICK) 非常相似,而神经毒性变体存在于锥蜗牛、刺客虫、蝎子和蜘蛛中。合成其中一种假定的 ICK,U-Asilidin₁-Mar1a,然后对生态相关的猎物模型进行毒性测定,结果表明其中一种可能作为一种神经毒素参与猎物的固定。我们的研究结果对于进一步解决这些问题以及了解驱动双翅目和其他节肢动物毒液进化的过程是至关重要的。
相似文献
Insect Biochem Mol Biol. 2019-12-21
Toxins (Basel). 2020-11-24
J Proteome Res. 2012-11-29
Mol Cell Proteomics. 2012-5-17
Proc Natl Acad Sci U S A. 2020-5-12
Toxins (Basel). 2019-3-19
Mol Cell Proteomics. 2017-4
引用本文的文献
Front Bioeng Biotechnol. 2023-5-3
Toxins (Basel). 2020-11-24
Biochem Pharmacol. 2020-11
本文引用的文献
Curr Biol. 2017-6-22
Curr Biol. 2017-3-30
Mol Cell Proteomics. 2017-4
Genome Biol Evol. 2017-1-1