Suppr超能文献

基于负像重评分的对接构象优化。

Getting Docking into Shape Using Negative Image-Based Rescoring.

机构信息

Institute of Biomedicine, Kiinamyllynkatu 10, Integrative Physiology and Pharmacy , University of Turku , FI-20520 Turku , Finland.

Aurlide Ltd. , FI-21420 Lieto , Finland.

出版信息

J Chem Inf Model. 2019 Aug 26;59(8):3584-3599. doi: 10.1021/acs.jcim.9b00383. Epub 2019 Jul 24.

Abstract

The failure of default scoring functions to ensure virtual screening enrichment is a persistent problem for the molecular docking algorithms used in structure-based drug discovery. To remedy this problem, elaborate rescoring and postprocessing schemes have been developed with a varying degree of success, specificity, and cost. The negative image-based rescoring (R-NiB) has been shown to improve the flexible docking performance markedly with a variety of drug targets. The yield improvement is achieved by comparing the alternative docking poses against the negative image of the target protein's ligand-binding cavity. In other words, the shape and electrostatics of the binding pocket is directly used in the similarity comparison to rank the explicit docking poses. Here, the PANTHER/ShaEP-based R-NiB methodology is tested with six popular docking softwares, including GLIDE, PLANTS, GOLD, DOCK, AUTODOCK, and AUTODOCK VINA, using five validated benchmark sets. Overall, the results indicate that R-NiB outperforms the default docking scoring consistently and inexpensively, demonstrating that the methodology is ready for wide-scale virtual screening usage.

摘要

默认打分函数未能确保虚拟筛选的富集,这是基于结构的药物发现中所使用的分子对接算法的一个持续存在的问题。为了解决这个问题,已经开发了各种精细的重打分和后处理方案,这些方案在特异性、成本和效果上各有不同。基于负像的重打分(R-NiB)已被证明可以显著提高各种药物靶标的柔性对接性能。通过将替代对接构象与靶蛋白配体结合腔的负像进行比较,从而实现产率的提高。换句话说,直接在相似性比较中使用结合口袋的形状和静电特性来对显式对接构象进行排序。在这里,使用六个流行的对接软件(包括 GLIDE、PLANTS、GOLD、DOCK、AUTODOCK 和 AUTODOCK VINA),并使用五个经过验证的基准集,对基于 PANTHER/ShaEP 的 R-NiB 方法进行了测试。总体而言,结果表明 R-NiB 始终如一地且经济高效地优于默认对接打分,这表明该方法已经准备好进行广泛的虚拟筛选使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd17/6750746/f43534a33046/ci9b00383_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验