State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Microbial Resource Center, Microbiology Institute of Shaanxi, Xi'an, Shaanxi, 710043, China.
Environ Microbiol. 2019 Dec;21(12):4488-4503. doi: 10.1111/1462-2920.14736. Epub 2019 Jul 29.
FgPrp4, the only kinase in the spliceosome, is not essential for viability, but is important for splicing efficiency in Fusarium graminearum. The Fgprp4 deletion mutant had severe growth defects but often produced spontaneous suppressors with faster growth rate. To better understand the suppression mechanism, we identified and characterized spontaneous mutations in the tri-snRNP-specific protein, FgSad1, which suppressed the growth defects of Fgprp4. The L512P mutation was verified for its suppressive effects on Fgprp4, suggesting that mutations in FgSad1 may have effects involving FgPrp4 phosphorylation on FgSad1. Phosphoproteomics analysis showed that FgSad1 may not be the direct substrate of FgPrp4 kinase. Furthermore, truncation analysis showed that the N-terminal, extra RS-rich region of FgSad1 is critical for its function and is post-translationally modified. The P258S or S269P mutations in FgSad1 increased its interactions with the U5 protein FgPrp8 and the U4/U6 protein FgPrp31, which may result in tri-snRNP stabilization. Additionally, the D76N mutation increased the association of FgSad1 with the U2 snRNP. These data indicate that suppressor mutations in FgSad1 increase the stability of the tri-snRNP and/or the affinity of FgSad1 with U2 snRNP and therefore potentially facilitate the docking of tri-snRNP into the spliceosome.
FgPrp4 是剪接体中唯一的激酶,它对真菌的生存不是必需的,但对剪接效率很重要。Fgprp4 缺失突变体的生长缺陷严重,但经常产生生长速度更快的自发抑制子。为了更好地理解抑制机制,我们鉴定并表征了三 snRNP 特异性蛋白 FgSad1 的自发突变,该突变抑制了 Fgprp4 的生长缺陷。L512P 突变被证实对 Fgprp4 具有抑制作用,表明 FgSad1 中的突变可能会影响 FgPrp4 对 FgSad1 的磷酸化。磷酸化蛋白质组学分析表明,FgSad1 可能不是 FgPrp4 激酶的直接底物。此外,截短分析表明,FgSad1 的 N 端富含 RS 的额外区域对于其功能至关重要,并经过翻译后修饰。FgSad1 中的 P258S 或 S269P 突变增加了其与 U5 蛋白 FgPrp8 和 U4/U6 蛋白 FgPrp31 的相互作用,这可能导致三 snRNP 稳定。此外,D76N 突变增加了 FgSad1 与 U2 snRNP 的结合。这些数据表明,FgSad1 中的抑制子突变增加了三 snRNP 的稳定性和/或 FgSad1 与 U2 snRNP 的亲和力,从而可能促进三 snRNP 进入剪接体。