Suppr超能文献

Fng1 和 Rpd3 HDAC 复合物在禾谷镰刀菌 H4 乙酰化中的拮抗作用。

Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum.

机构信息

State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.

Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States of America.

出版信息

PLoS Genet. 2020 Nov 2;16(11):e1009185. doi: 10.1371/journal.pgen.1009185. eCollection 2020 Nov.

Abstract

Histone acetylation, balanced by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes, affects dynamic transitions of chromatin structure to regulate transcriptional accessibility. However, little is known about the interplay between HAT and HDAC complexes in Fusarium graminearum, a causal agent of Fusarium Head Blight (FHB) that uniquely contains chromosomal regions enriched for house-keeping or infection-related genes. In this study, we identified the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and found that it specifically interacts with the FgEsa1 HAT of the NuA4 complex. Deletion of FNG1 led to severe growth defects and blocked conidiation, sexual reproduction, DON production, and plant infection. The fng1 mutant was normal in H3 acetylation but significantly reduced in H4 acetylation. A total of 34 spontaneous suppressors of fng1 with faster growth rate were isolated. Most of them were still defective in sexual reproduction and plant infection. Thirty two of them had mutations in orthologs of yeast RPD3, SIN3, and SDS3, three key components of the yeast Rpd3L HDAC complex. Four mutations in these three genes were verified to suppress the defects of fng1 mutant in growth and H4 acetylation. The rest two suppressor strains had a frameshift or nonsense mutation in a glutamine-rich hypothetical protein that may be a novel component of the FgRpd3 HDAC complex in filamentous fungi. FgRpd3, like Fng1, localized in euchromatin. Deletion of FgRPD3 resulted in severe growth defects and elevated H4 acetylation. In contract, the Fgsds3 deletion mutant had only a minor reduction in growth rate but FgSIN3 appeared to be an essential gene. RNA-seq analysis revealed that 48.1% and 54.2% of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3, respectively. Taken together, our data showed that Fng1 is important for H4 acetylation as a component of the NuA4 complex and functionally related to the FgRpd3 HDAC complex for transcriptional regulation of genes important for growth, conidiation, sexual reproduction, and plant infection in F. graminearum.

摘要

组蛋白乙酰化由组蛋白乙酰转移酶 (HAT) 和组蛋白去乙酰化酶 (HDAC) 复合物平衡,影响染色质结构的动态转变,从而调节转录的可及性。然而,在禾谷镰刀菌(一种独特的包含富含管家或感染相关基因的染色体区域的赤霉病的病原体)中,HAT 和 HDAC 复合物之间的相互作用知之甚少。在本研究中,我们在禾谷镰刀菌中鉴定了人类生长抑制剂 (ING1) 基因的同源物(FNG1),并发现它特异性地与 NuA4 复合物的 FgEsa1 HAT 相互作用。FNG1 的缺失导致严重的生长缺陷,并阻断了分生孢子形成、有性生殖、DON 产生和植物感染。fng1 突变体在 H3 乙酰化方面正常,但 H4 乙酰化显著降低。共分离出 34 个生长速度较快的 fng1 自发抑制子。它们大多数在有性生殖和植物感染方面仍然有缺陷。其中 32 个在酵母 RPD3、SIN3 和 SDS3 的同源物中有突变,这三个是酵母 Rpd3L HDAC 复合物的关键成分。在这三个基因中验证了四个突变可抑制 fng1 突变体在生长和 H4 乙酰化方面的缺陷。其余两个抑制子菌株在一个富含谷氨酰胺的假设蛋白中发生移码或无义突变,该蛋白可能是丝状真菌 FgRpd3 HDAC 复合物的一个新成分。FgRpd3 与 Fng1 一样,定位于常染色质。FgRPD3 的缺失导致严重的生长缺陷和 H4 乙酰化升高。相比之下,Fgsds3 缺失突变体的生长速度仅略有下降,但 FgSIN3 似乎是一个必需基因。RNA-seq 分析显示,在 fng1 突变体中改变表达水平的基因有 48.1%和 54.2%在两个 FgRPD3 和 FgSDS3 突变的抑制子菌株中恢复到正常表达水平。总之,我们的数据表明,Fng1 作为 NuA4 复合物的一个组成部分,对 H4 乙酰化很重要,并且在转录调控对禾谷镰刀菌生长、分生孢子形成、有性生殖和植物感染重要的基因方面,与 FgRpd3 HDAC 复合物功能相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0de3/7660929/16a48db369c3/pgen.1009185.g001.jpg

相似文献

1
Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum.
PLoS Genet. 2020 Nov 2;16(11):e1009185. doi: 10.1371/journal.pgen.1009185. eCollection 2020 Nov.
2
The ING protein Fng2 associated with RPD3 HDAC complex for the regulation of fungal development and pathogenesis in wheat head blight fungus.
Int J Biol Macromol. 2024 May;268(Pt 2):131938. doi: 10.1016/j.ijbiomac.2024.131938. Epub 2024 Apr 29.
8
Effect of H2A.Z deletion is rescued by compensatory mutations in Fusarium graminearum.
PLoS Genet. 2020 Oct 22;16(10):e1009125. doi: 10.1371/journal.pgen.1009125. eCollection 2020 Oct.

引用本文的文献

1
PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2413127122. doi: 10.1073/pnas.2413127122. Epub 2024 Dec 30.
8
FgCsn12 Is Involved in the Regulation of Ascosporogenesis in the Wheat Scab Fungus .
Int J Mol Sci. 2022 Sep 9;23(18):10445. doi: 10.3390/ijms231810445.
9
10
Stage-Specific Genetic Interaction between and during Vegetative Growth and Conidiation in .
Int J Mol Sci. 2022 Aug 14;23(16):9106. doi: 10.3390/ijms23169106.

本文引用的文献

1
Histone acetyltransferase Gcn5 regulates gene expression by promoting the transcription of histone methyltransferase SET1.
Biochim Biophys Acta Gene Regul Mech. 2020 Sep;1863(9):194603. doi: 10.1016/j.bbagrm.2020.194603. Epub 2020 Jul 11.
2
Wavelet-based Benjamini-Hochberg procedures for multiple testing under dependence.
Math Biosci Eng. 2019 Sep 24;17(1):56-72. doi: 10.3934/mbe.2020003.
3
A MYST family histone acetyltransferase, MoSAS3, is required for development and pathogenicity in the rice blast fungus.
Mol Plant Pathol. 2019 Nov;20(11):1491-1505. doi: 10.1111/mpp.12856. Epub 2019 Jul 30.
4
Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum.
Fungal Genet Biol. 2019 Nov;132:103251. doi: 10.1016/j.fgb.2019.103251. Epub 2019 Jul 15.
6
An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection.
Nat Microbiol. 2019 Sep;4(9):1582-1591. doi: 10.1038/s41564-019-0468-8. Epub 2019 Jun 3.
8
NuA4 acetyltransferase is required for efficient nucleotide excision repair in yeast.
DNA Repair (Amst). 2019 Jan;73:91-98. doi: 10.1016/j.dnarep.2018.11.006. Epub 2018 Nov 14.
9
fastp: an ultra-fast all-in-one FASTQ preprocessor.
Bioinformatics. 2018 Sep 1;34(17):i884-i890. doi: 10.1093/bioinformatics/bty560.
10
The Pfam protein families database in 2019.
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432. doi: 10.1093/nar/gky995.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验