Suppr超能文献

卡西-巴克斯特表面实现了微流控和 3D 细胞培养的可逆、无阻碍集成。

Cassie-Baxter Surfaces for Reversible, Barrier-Free Integration of Microfluidics and 3D Cell Culture.

机构信息

Mechanical Engineering , University of Kentucky , Lexington , Kentucky 40506 , United States.

Pharmacology and Nutritional Sciences , University of Kentucky , Lexington , Kentucky 40536 , United States.

出版信息

Langmuir. 2019 Aug 13;35(32):10299-10308. doi: 10.1021/acs.langmuir.9b01163. Epub 2019 Jul 23.

Abstract

3D cell culture and microfluidics both represent powerful tools for replicating critical components of the cell microenvironment; however, challenges involved in the integration of the two and compatibility with standard tissue culture protocols still represent a steep barrier to widespread adoption. Here we demonstrate the use of engineered surface roughness in the form of microfluidic channels to integrate 3D cell-laden hydrogels and microfluidic fluid delivery. When a liquid hydrogel precursor solution is pipetted onto a surface containing open microfluidic channels, the solid/liquid/air interface becomes pinned at sharp edges such that the hydrogel forms the "fourth wall" of the channels upon solidification. We designed Cassie-Baxter microfluidic surfaces that leverage this phenomenon, making it possible to have barrier-free diffusion between the channels and the hydrogel; in addition, sealing is robust enough to prevent leakage between the two components during fluid flow, but the sealing can also be reversed to facilitate recovery of the cell/hydrogel material after culture. This method was used to culture MDA-MB-231 cells in collagen, which remained viable and proliferated while receiving media exclusively through the microfluidic channels over the course of several days.

摘要

3D 细胞培养和微流控技术都代表了复制细胞微环境关键组成部分的有力工具;然而,将两者集成并与标准组织培养方案兼容所涉及的挑战仍然是广泛采用的一个巨大障碍。在这里,我们展示了以微流道形式的工程化表面粗糙度来整合 3D 细胞负载水凝胶和微流控流体输送。当将液体水凝胶前体溶液滴加到含有开放微流道的表面上时,固/液/气界面会被固定在锐利的边缘,使得水凝胶在凝固时形成通道的“第四壁”。我们设计了 Cassie-Baxter 微流道表面,利用这一现象使得通道和水凝胶之间可以无障碍地扩散;此外,密封足够牢固,可防止在流体流动过程中两个组件之间发生泄漏,但密封也可以反转,以便在培养后方便回收细胞/水凝胶材料。该方法用于在胶原蛋白中培养 MDA-MB-231 细胞,这些细胞在数天的时间内仅通过微流道接收培养基,仍然保持存活和增殖。

相似文献

2
Rapid spheroid clearing on a microfluidic chip.微流控芯片上的快速球体清除。
Lab Chip. 2017 Dec 19;18(1):153-161. doi: 10.1039/c7lc01114h.
8
Photo-crosslinkable hydrogel-based 3D microfluidic culture device.基于光交联水凝胶的三维微流控培养装置
Electrophoresis. 2015 Apr;36(7-8):994-1001. doi: 10.1002/elps.201400465. Epub 2015 Mar 24.
10
Hydrophobic Patterning-Based 3D Microfluidic Cell Culture Assay.基于疏水图案的 3D 微流控细胞培养分析。
Adv Healthc Mater. 2018 Jun;7(12):e1800122. doi: 10.1002/adhm.201800122. Epub 2018 Apr 26.

本文引用的文献

4
Modeling Physiological Events in 2D vs. 3D Cell Culture.二维与三维细胞培养中生理事件的建模。
Physiology (Bethesda). 2017 Jul;32(4):266-277. doi: 10.1152/physiol.00036.2016.
8
Glucose diffusivity in cell-seeded tissue engineering scaffolds.细胞接种的组织工程支架中葡萄糖的扩散系数
Biotechnol Lett. 2016 Jan;38(1):183-90. doi: 10.1007/s10529-015-1958-2. Epub 2015 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验