Suppr超能文献

尿毒症代谢物通过破坏电子传递系统和基质脱氢酶活性来损害骨骼肌线粒体的能量代谢。

Uremic metabolites impair skeletal muscle mitochondrial energetics through disruption of the electron transport system and matrix dehydrogenase activity.

机构信息

Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida.

Center for Exercise Science, University of Florida, Gainesville, Florida.

出版信息

Am J Physiol Cell Physiol. 2019 Oct 1;317(4):C701-C713. doi: 10.1152/ajpcell.00098.2019. Epub 2019 Jul 10.

Abstract

Chronic kidney disease (CKD) leads to increased skeletal muscle fatigue, weakness, and atrophy. Previous work has implicated mitochondria within the skeletal muscle as a mediator of muscle dysfunction in CKD; however, the mechanisms underlying mitochondrial dysfunction in CKD are not entirely known. The purpose of this study was to define the impact of uremic metabolites on mitochondrial energetics. Skeletal muscle mitochondria were isolated from C57BL/6N mice and exposed to vehicle (DMSO) or varying concentrations of uremic metabolites: indoxyl sulfate, indole-3-acetic-acid, l-kynurenine, and kynurenic acid. A comprehensive mitochondrial phenotyping platform that included assessments of mitochondrial oxidative phosphorylation (OXPHOS) conductance and respiratory capacity, hydrogen peroxide production (HO), matrix dehydrogenase activity, electron transport system enzyme activity, and ATP synthase activity was employed. Uremic metabolite exposure resulted in a ~25-40% decrease in OXPHOS conductance across multiple substrate conditions ( < 0.05, = 5-6/condition), as well as decreased ADP-stimulated and uncoupled respiratory capacity. ATP synthase activity was not impacted by uremic metabolites; however, a screen of matrix dehydrogenases indicated that malate and glutamate dehydrogenases were impaired by some, but not all, uremic metabolites. Assessments of electron transport system enzymes indicated that uremic metabolites significantly impair complex III and IV. Uremic metabolites resulted in increased HO under glutamate/malate, pyruvate/malate, and succinate conditions across multiple levels of energy demand (all < 0.05, = 4/group). Disruption of mitochondrial OXPHOS was confirmed by decreased respiratory capacity and elevated superoxide production in cultured myotubes. These findings provide direct evidence that uremic metabolites negatively impact skeletal muscle mitochondrial energetics, resulting in decreased energy transfer, impaired complex III and IV enzyme activity, and elevated oxidant production.

摘要

慢性肾脏病(CKD)导致骨骼肌疲劳、无力和萎缩增加。先前的研究表明,CKD 中的骨骼肌线粒体是肌肉功能障碍的介导物;然而,CKD 中线粒体功能障碍的机制尚不完全清楚。本研究旨在定义尿毒症代谢物对线粒体能量学的影响。从小鼠的 C57BL/6N 骨骼肌中分离出线粒体,并将其暴露于载体(DMSO)或不同浓度的尿毒症代谢物:吲哚硫酸、吲哚-3-乙酸、L-犬尿氨酸和犬尿氨酸中。采用综合线粒体表型平台,包括评估线粒体氧化磷酸化(OXPHOS)电导和呼吸能力、过氧化氢产生(HO)、基质脱氢酶活性、电子传递系统酶活性和 ATP 合酶活性。尿毒症代谢物暴露导致多种底物条件下的 OXPHOS 电导下降约 25-40%(<0.05,=5-6/条件),以及 ADP 刺激和去耦呼吸能力下降。ATP 合酶活性不受尿毒症代谢物影响;然而,基质脱氢酶的筛选表明,一些但不是所有尿毒症代谢物都会损害苹果酸脱氢酶和谷氨酸脱氢酶。电子传递系统酶的评估表明,尿毒症代谢物显著损害复合物 III 和 IV。在多种能量需求水平下,谷氨酸/苹果酸、丙酮酸/苹果酸和琥珀酸条件下,尿毒症代谢物导致 HO 增加(所有<0.05,=4/组)。在培养的肌管中,呼吸能力下降和超氧化物产生增加证实了线粒体 OXPHOS 的破坏。这些发现提供了直接证据,表明尿毒症代谢物对骨骼肌线粒体能量学产生负面影响,导致能量传递减少、复合物 III 和 IV 酶活性受损以及氧化应激产物增加。

相似文献

1
Uremic metabolites impair skeletal muscle mitochondrial energetics through disruption of the electron transport system and matrix dehydrogenase activity.
Am J Physiol Cell Physiol. 2019 Oct 1;317(4):C701-C713. doi: 10.1152/ajpcell.00098.2019. Epub 2019 Jul 10.
4
Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology.
Int J Biochem Cell Biol. 2009 Oct;41(10):1837-45. doi: 10.1016/j.biocel.2009.03.013. Epub 2009 Apr 2.
6
Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle.
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F1128-F1140. doi: 10.1152/ajprenal.00600.2016. Epub 2017 Apr 5.
9
Uremic Myopathy and Mitochondrial Dysfunction in Kidney Disease.
Int J Mol Sci. 2022 Nov 4;23(21):13515. doi: 10.3390/ijms232113515.
10
Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle.
PLoS One. 2012;7(4):e34890. doi: 10.1371/journal.pone.0034890. Epub 2012 Apr 18.

引用本文的文献

1
Targeting Sarcopenia in CKD: The Emerging Role of GLP-1 Receptor Agonists.
Int J Mol Sci. 2025 Aug 21;26(16):8096. doi: 10.3390/ijms26168096.
4
A framework of biomarkers for skeletal muscle aging: a consensus statement by the Aging Biomarker Consortium.
Life Med. 2025 Jan 26;3(6):lnaf001. doi: 10.1093/lifemedi/lnaf001. eCollection 2024 Dec.
5
Sarcopenia in Chronic Kidney Disease: A Narrative Review from Pathophysiology to Therapeutic Approaches.
Biomedicines. 2025 Feb 4;13(2):352. doi: 10.3390/biomedicines13020352.
6
Protein-energy wasting in chronic kidney disease: mechanisms responsible for loss of muscle mass and function.
Kidney Res Clin Pract. 2025 Sep;44(5):726-740. doi: 10.23876/j.krcp.24.214. Epub 2025 Feb 21.
7
Multiomic Analysis of Calf Muscle in Peripheral Artery Disease and Chronic Kidney Disease.
Circ Res. 2025 Mar 28;136(7):688-703. doi: 10.1161/CIRCRESAHA.124.325642. Epub 2025 Feb 18.
8
Kynurenines and aerobic exercise capacity in chronic kidney disease: A cross-sectional and longitudinal study.
PLoS One. 2025 Jan 15;20(1):e0317201. doi: 10.1371/journal.pone.0317201. eCollection 2025.
10
Indoxyl Sulfate-Induced Macrophage Toxicity and Therapeutic Strategies in Uremic Atherosclerosis.
Toxins (Basel). 2024 May 31;16(6):254. doi: 10.3390/toxins16060254.

本文引用的文献

1
CKD autophagy activation and skeletal muscle atrophy-a preliminary study of mitophagy and inflammation.
Eur J Clin Nutr. 2019 Jun;73(6):950-960. doi: 10.1038/s41430-018-0381-x. Epub 2019 Jan 3.
2
Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects.
Arch Biochem Biophys. 2019 Feb 15;662:49-60. doi: 10.1016/j.abb.2018.11.005. Epub 2018 Nov 16.
4
Skeletal muscle fibrosis is associated with decreased muscle inflammation and weakness in patients with chronic kidney disease.
Am J Physiol Renal Physiol. 2018 Dec 1;315(6):F1658-F1669. doi: 10.1152/ajprenal.00314.2018. Epub 2018 Oct 3.
5
Mitochondrial Diagnostics: A Multiplexed Assay Platform for Comprehensive Assessment of Mitochondrial Energy Fluxes.
Cell Rep. 2018 Sep 25;24(13):3593-3606.e10. doi: 10.1016/j.celrep.2018.08.091.
6
Chronic kidney disease and acquired mitochondrial myopathy.
Curr Opin Nephrol Hypertens. 2018 Mar;27(2):113-120. doi: 10.1097/MNH.0000000000000393.
8
Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction.
J Cachexia Sarcopenia Muscle. 2017 Oct;8(5):735-747. doi: 10.1002/jcsm.12202. Epub 2017 Jun 12.
9
Sarcopenia, obesity, and mortality in US adults with and without chronic kidney disease.
Kidney Int Rep. 2017 Mar;2(2):201-211. doi: 10.1016/j.ekir.2016.10.008. Epub 2016 Nov 4.
10
Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle.
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F1128-F1140. doi: 10.1152/ajprenal.00600.2016. Epub 2017 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验