Biochimie et Physiologie Mol�culaire des Plantes, Univ Montpellier, CNRS, INRA, SupAgro Montpellier, Campus SupAgro-INRA, Montpellier Cedex 2, France.
Laboratoire des Plantes Extr�mophiles, BP 901, Centre de Biotechnologie, Technopole de Borj C�dria, HammamLif, Tunisia.
Plant Cell Physiol. 2019 Nov 1;60(11):2423-2435. doi: 10.1093/pcp/pcz136.
Control of K+ and Na+ transport plays a central role in plant adaptation to salinity. In the halophyte Hordeum maritimum, we have characterized a transporter gene, named HmHKT2;1, whose homolog HvHKT2;1 in cultivated barley, Hordeum vulgare, was known to give rise to increased salt tolerance when overexpressed. The encoded protein is strictly identical in two H. maritimum ecotypes, from two biotopes (Tunisian sebkhas) affected by different levels of salinity. These two ecotypes were found to display distinctive responses to salt stress in terms of biomass production, Na+ contents, K+ contents and K+ absorption efficiency. Electrophysiological analysis of HmHKT2;1 in Xenopus oocytes revealed distinctive properties when compared with HvHKT2;1 and other transporters from the same group, especially a much higher affinity for both Na+ and K+, and an Na+-K+ symporter behavior in a very broad range of Na+ and K+ concentrations, due to reduced K+ blockage of the transport pathway. Domain swapping experiments identified the region including the fifth transmembrane segment and the adjacent extracellular loop as playing a major role in the determination of the affinity for Na+ and the level of K+ blockage in these HKT2;1 transporters. The analysis (quantitative reverse transcription-PCR; qRT-PCR) of HmHKT2;1 expression in the two ecotypes submitted to saline conditions revealed that the levels of HmHKT2;1 transcripts were maintained constant in the most salt-tolerant ecotype whereas they decreased in the less tolerant one. Both the unique functional properties of HmHKT2;1 and the regulation of the expression of the encoding gene could contribute to H. maritimum adaptation to salinity.
控制 K+和 Na+的转运在植物适应盐度中起着核心作用。在盐生植物大麦草(Hordeum maritimum)中,我们已经鉴定出一种转运蛋白基因,命名为 HmHKT2;1,其在栽培大麦(Hordeum vulgare)中的同源物 HvHKT2;1 被证实过表达时会提高耐盐性。该编码蛋白在来自两个生境(受不同盐度影响的突尼斯盐沼)的两个大麦草生态型中完全相同。这两个生态型在生物量生产、Na+含量、K+含量和 K+吸收效率方面对盐胁迫表现出不同的反应。在非洲爪蟾卵母细胞中对 HmHKT2;1 的电生理分析表明,与 HvHKT2;1 和同一组的其他转运蛋白相比,它具有独特的特性,尤其是对 Na+和 K+具有更高的亲和力,以及在非常宽的 Na+和 K+浓度范围内表现出 Na+-K+协同转运体行为,这是由于转运途径中 K+的阻断减少。结构域交换实验确定了包括第五个跨膜段和相邻的细胞外环在内的区域在决定这些 HKT2;1 转运蛋白对 Na+的亲和力和 K+阻断水平方面起着主要作用。对在盐胁迫条件下的两个生态型中 HmHKT2;1 的表达进行的分析(定量逆转录 PCR;qRT-PCR)表明,在耐盐性最强的生态型中,HmHKT2;1 转录本的水平保持不变,而在耐盐性较低的生态型中则下降。HmHKT2;1 的独特功能特性和编码基因表达的调控都可能有助于大麦草适应盐度。