Suppr超能文献

用 IRTree 方法研究极端反应偏差的不变性类型评估。

Evaluation on types of invariance in studying extreme response bias with an IRTree approach.

机构信息

Department of Education, University of California, Los Angeles, California, USA.

Department of Psychology, Ohio State University, Columbus, Ohio, USA.

出版信息

Br J Math Stat Psychol. 2019 Nov;72(3):517-537. doi: 10.1111/bmsp.12182. Epub 2019 Jul 10.

Abstract

In recent years, item response tree (IRTree) approaches have received increasing attention in the response style literature for their ability to partial out response style latent variables as well as associated item parameters. When an IRTree approach is adopted to measure extreme response styles, directional and content invariance could be assumed at the latent variable and item parameter levels. In this study, we propose to evaluate the empirical validity of these invariance assumptions by employing a general IRTree model with relaxed invariance assumptions. This would allow us to examine extreme response biases, beyond extreme response styles. With three empirical applications of the proposed evaluation, we find that relaxing some of the invariance assumptions improves the model fit, which suggests that not all assumed invariances are empirically supported. Specifically, at the latent variable level, we find reasonable evidence for directional invariance but mixed evidence for content invariance, although we also find that estimated correlations between content-specific extreme response latent variables are high, hinting at the potential presence of a general extreme response tendency. At the item parameter level, we find no directional or content invariance for thresholds and no content invariance for slopes. We discuss how the variant item parameter estimates obtained from a general IRTree model can offer useful insight to help us understand response bias related to extreme responding measured within the IRTree framework.

摘要

近年来,项目反应树 (IRTree) 方法在反应风格文献中受到越来越多的关注,因为它们能够分离出反应风格潜在变量以及相关的项目参数。当采用 IRTree 方法来测量极端反应风格时,可以假设潜在变量和项目参数水平上具有方向和内容不变性。在本研究中,我们建议通过采用具有宽松不变性假设的一般 IRTree 模型来评估这些不变性假设的实证有效性。这将允许我们检查超越极端反应风格的极端反应偏差。通过对所提出的评估的三个实证应用,我们发现放宽一些不变性假设可以提高模型拟合度,这表明并非所有假设的不变性都得到了经验支持。具体来说,在潜在变量水平上,我们发现方向不变性有合理的证据,但内容不变性的证据混杂,尽管我们还发现内容特定的极端反应潜在变量之间的估计相关性很高,暗示潜在存在一般的极端反应倾向。在项目参数水平上,我们发现阈值没有方向或内容不变性,斜率没有内容不变性。我们讨论了如何从一般的 IRTree 模型中获得的变体项目参数估计可以提供有用的见解,帮助我们理解在 IRTree 框架内测量的与极端反应相关的反应偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验