Korth Benjamin, Harnisch Falk
Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
Front Microbiol. 2019 Jun 26;10:1352. doi: 10.3389/fmicb.2019.01352. eCollection 2019.
Electroactive microorganisms (EAM) harvest energy by reducing insoluble terminal electron acceptors (TEA) including electrodes via extracellular electron transfer (EET). Therefore, compared to microorganisms respiring soluble TEA, an adapted approach is required for thermodynamic analyses. In EAM, the thermodynamic frame (i.e., maximum available energy) is restricted as only a share of the energy difference between electron donor and TEA is exploited via the electron-transport chain to generate proton-motive force being subsequently utilized for ATP synthesis. However, according to a common misconception, the anode potential is suggested to co-determine the thermodynamic frame of EAM. By comparing the model organism spp. and microorganisms respiring soluble TEA, we reason that a considerable part of the electron-transport chain of EAM performing direct EET does not contribute to the build-up of proton-motive force and thus, the anode potential does not co-determine the thermodynamic frame. Furthermore, using a modeling platform demonstrates that the influence of anode potential on energy harvest is solely a kinetic effect. When facing low anode potentials, NADH is accumulating due to a slow direct EET rate leading to a restricted exploitation of the thermodynamic frame. For anode potentials ≥ 0.2 V (vs. SHE), EET kinetics, NAD/NADH ratio as well as exploitation of the thermodynamic frame are maximized, and a further potential increase does not result in higher energy harvest. Considering the limited influence of the anode potential on energy harvest of EAM is a prerequisite to improve thermodynamic analyses, microbial resource mining, and to transfer microbial electrochemical technologies (MET) into practice.
电活性微生物(EAM)通过细胞外电子转移(EET)还原包括电极在内的不溶性终端电子受体(TEA)来获取能量。因此,与呼吸可溶性TEA的微生物相比,热力学分析需要一种适应性方法。在EAM中,热力学框架(即最大可用能量)受到限制,因为电子供体和TEA之间的能量差只有一部分通过电子传递链被利用来产生质子动力,随后用于ATP合成。然而,根据一个常见的误解,阳极电位被认为共同决定了EAM的热力学框架。通过比较模式生物和呼吸可溶性TEA的微生物,我们推断,进行直接EET的EAM的电子传递链的相当一部分对质子动力的建立没有贡献,因此,阳极电位并不共同决定热力学框架。此外,使用一个建模平台表明,阳极电位对能量收获的影响仅仅是一种动力学效应。当面对低阳极电位时,由于直接EET速率缓慢,NADH会积累,导致对热力学框架的利用受限。对于阳极电位≥0.2 V(相对于标准氢电极),EET动力学、NAD/NADH比率以及对热力学框架的利用都达到最大化,进一步提高电位不会导致更高的能量收获。认识到阳极电位对EAM能量收获的有限影响是改进热力学分析、微生物资源挖掘以及将微生物电化学技术(MET)转化为实际应用的前提条件。