Levar Caleb E, Hoffman Colleen L, Dunshee Aubrey J, Toner Brandy M, Bond Daniel R
Department of Microbiology, BioTechnology Institute, University of Minnesota-Twin Cities, St Paul, MN, USA.
Department of Earth Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
ISME J. 2017 Mar;11(3):741-752. doi: 10.1038/ismej.2016.146. Epub 2017 Jan 3.
Geobacter sulfurreducens uses at least two different pathways to transport electrons out of the inner membrane quinone pool before reducing acceptors beyond the outer membrane. When growing on electrodes poised at oxidizing potentials, the CbcL-dependent pathway operates at or below redox potentials of -0.10 V vs the standard hydrogen electrode, whereas the ImcH-dependent pathway operates only above this value. Here, we provide evidence that G. sulfurreducens also requires different electron transfer proteins for reduction of a wide range of Fe(III)- and Mn(IV)-(oxyhydr)oxides, and must transition from a high- to low-potential pathway during reduction of commonly studied soluble and insoluble metal electron acceptors. Freshly precipitated Fe(III)-(oxyhydr)oxides could not be reduced by mutants lacking the high-potential pathway. Aging these minerals by autoclaving did not change their powder X-ray diffraction pattern, but restored reduction by mutants lacking the high-potential pathway. Mutants lacking the low-potential, CbcL-dependent pathway had higher growth yields with both soluble and insoluble Fe(III). Together, these data suggest that the ImcH-dependent pathway exists to harvest additional energy when conditions permit, and CbcL switches on to allow respiration closer to thermodynamic equilibrium conditions. With evidence of multiple pathways within a single organism, the study of extracellular respiration should consider not only the crystal structure or solubility of a mineral electron acceptor, but rather the redox potential, as this variable determines the energetic reward affecting reduction rates, extents, and final microbial growth yields in the environment.
硫还原地杆菌在将电子传递到外膜之外的受体之前,至少使用两种不同的途径将电子从内膜醌池输出。当在处于氧化电位的电极上生长时,依赖CbcL的途径在相对于标准氢电极的氧化还原电位为-0.10 V或更低时起作用,而依赖ImcH的途径仅在该值以上起作用。在这里,我们提供证据表明,硫还原地杆菌在还原多种Fe(III)和Mn(IV)-(羟基)氧化物时也需要不同的电子传递蛋白,并且在还原常见的可溶性和不溶性金属电子受体时必须从高电位途径转变为低电位途径。缺乏高电位途径的突变体无法还原新沉淀的Fe(III)-(羟基)氧化物。通过高压灭菌使这些矿物老化并没有改变它们的粉末X射线衍射图谱,但恢复了缺乏高电位途径的突变体的还原能力。缺乏低电位、依赖CbcL途径的突变体在可溶性和不溶性Fe(III)上都有更高的生长产量。总之,这些数据表明,依赖ImcH的途径在条件允许时存在以获取额外的能量,而CbcL开启以允许呼吸更接近热力学平衡条件。鉴于在单个生物体中存在多种途径的证据,细胞外呼吸的研究不仅应考虑矿物电子受体的晶体结构或溶解度,还应考虑氧化还原电位,因为这个变量决定了影响环境中还原速率、程度和最终微生物生长产量的能量回报。