Zheng Xuerong, Cao Yanhui, Zheng Xueli, Cai Meng, Zhang Jinfeng, Wang Jihui, Hu Wenbin
School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education , Tianjin University , Tianjin 300072 , P. R. China.
Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.
ACS Appl Mater Interfaces. 2019 Aug 7;11(31):27964-27972. doi: 10.1021/acsami.9b08424. Epub 2019 Jul 23.
Exploring efficient bifunctional oxygen electrocatalysts is a critical element for developing high-power-density metal-air batteries. Here, we propose an interface and oxygen vacancy engineering strategy to integrate subtle lattice distortions, oxygen vacancies, and nanopores on the surface of NiCoSe-O interface nanocrystals, which exhibit efficient bifunctional catalytic performances for oxygen evolution and reduction. The results from X-ray absorption spectroscopy and electron spin resonance spectroscopy demonstrate that the defect structure can enlarge the number of active sites for electrocatalytic performances. Flexible Zn-air battery using NiCoSe-O as a cathode displays large specific capacity and remarkable stability even after twisting at any angle, thus showing potential for wearable and portable electronic device application. The implementation of our method provides a powerful strategy for preparing advanced catalysts for energy utilization.
探索高效的双功能氧电催化剂是开发高功率密度金属空气电池的关键要素。在此,我们提出一种界面和氧空位工程策略,以在NiCoSe-O界面纳米晶体表面整合细微的晶格畸变、氧空位和纳米孔,这些纳米晶体对析氧和氧还原表现出高效的双功能催化性能。X射线吸收光谱和电子自旋共振光谱的结果表明,缺陷结构可以增加电催化性能的活性位点数量。使用NiCoSe-O作为阴极的柔性锌空气电池即使在任何角度扭曲后仍显示出大的比容量和显著的稳定性,因此在可穿戴和便携式电子设备应用中显示出潜力。我们方法的实施为制备用于能源利用的先进催化剂提供了有力策略。