School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China.
Mol Inform. 2019 Aug;38(8-9):e1800125. doi: 10.1002/minf.201800125. Epub 2019 Jul 11.
Imidacloprid (IMI) is the first widely used neonicotinoid insecticide due to its high insecticidal activity and low toxicity. However, as its extensive use in crop protection, many insects are resistant to IMI. One of the main resistance mechanisms of insects to IMI is Y151-S and R81T mutations in nicotinic acetylcholine receptor (nAChR). However, how these two mutations affect the interaction of IMI with nAChR is unknown. Here, to uncover the resistant mechanism of nAChR to IMI due to Y151-S and R81T mutations, molecular dynamics simulations and molecular mechanics/generalized Born surface area (MM-GBSA) calculation, residue interaction network (RIN) analysis were performed. Due that the structure of nAChR is still unkonwn, the crystal structure of lymnaea stagnalis acetylcholine binding protein (Ls-AChBP) was used here to simulate nAChR. Y151 and R81 in nAChR correspond to H145 and Q55 in Ls-AChBP, respectively. The calculated binding free energy indicated that two mutations reduced the binding ability of IMI with Ls-AChBP. Q55T mutation reduced the contribution of several key residues, such as W53, T55, Y113, T144 and C187. As for H145-S mutation, the contribution of W53, Q55 and Y113 residues also decreased. RIN analysis showed that two mutants changed the binding pocket by changing the conformation of residues that interact directly with the mutated residues. The obtained resistance mechanism of IMI will be helpful for the design of potent insecticides.
吡虫啉(IMI)是第一种广泛使用的新烟碱类杀虫剂,因其杀虫活性高、毒性低而受到广泛应用。然而,随着其在作物保护中的广泛应用,许多昆虫对 IMI 产生了抗性。昆虫对 IMI 产生抗性的主要机制之一是烟碱型乙酰胆碱受体(nAChR)中的 Y151-S 和 R81T 突变。然而,这两种突变如何影响 IMI 与 nAChR 的相互作用尚不清楚。在这里,为了揭示 Y151-S 和 R81T 突变导致 nAChR 对 IMI 产生抗性的机制,进行了分子动力学模拟和分子力学/广义 Born 表面积(MM-GBSA)计算、残基相互作用网络(RIN)分析。由于 nAChR 的结构仍然未知,这里使用了石蚕属蜗牛乙酰胆碱结合蛋白(Ls-AChBP)的晶体结构来模拟 nAChR。nAChR 中的 Y151 和 R81 分别对应于 Ls-AChBP 中的 H145 和 Q55。计算得到的结合自由能表明,这两种突变降低了 IMI 与 Ls-AChBP 的结合能力。Q55T 突变降低了几个关键残基的贡献,如 W53、T55、Y113、T144 和 C187。对于 H145-S 突变,W53、Q55 和 Y113 残基的贡献也降低了。RIN 分析表明,两种突变通过改变与突变残基直接相互作用的残基的构象,改变了结合口袋。获得的 IMI 抗性机制将有助于设计有效的杀虫剂。