Zhong Liming, Chen Yanlin, Zhang Xiao, Liu Shupeng, Wu Yuankui, Liu Yunbi, Lin Liyan, Feng Qianjin, Chen Wufan, Yang Wei
IEEE J Biomed Health Inform. 2020 Apr;24(4):1114-1124. doi: 10.1109/JBHI.2019.2927368. Epub 2019 Jul 9.
Given the complicated relationship between the magnetic resonance imaging (MRI) signals and the attenuation values, the attenuation correction in hybrid positron emission tomography (PET)/MRI systems remains a challenging task. Currently, existing methods are either time-consuming or require sufficient samples to train the models. In this paper, an efficient approach for predicting pseudo computed tomography (CT) images from T1- and T2-weighted MRI data with limited data is proposed. The proposed approach uses improved neighborhood anchored regression (INAR) as a baseline method to pre-calculate projected matrices to flexibly predict the pseudo CT patches. Techniques, including the augmentation of the MR/CT dataset, learning of the nonlinear descriptors of MR images, hierarchical search for nearest neighbors, data-driven optimization, and multi-regressor ensemble, are adopted to improve the effectiveness of the proposed approach. In total, 22 healthy subjects were enrolled in the study. The pseudo CT images obtained using INAR with multi-regressor ensemble yielded mean absolute error (MAE) of 92.73 ± 14.86 HU, peak signal-to-noise ratio of 29.77 ± 1.63 dB, Pearson linear correlation coefficient of 0.82 ± 0.05, dice similarity coefficient of 0.81 ± 0.03, and the relative mean absolute error (rMAE) in PET attenuation correction of 1.30 ± 0.20% compared with true CT images. Moreover, our proposed INAR method, without any refinement strategies, can achieve considerable results with only seven subjects (MAE 106.89 ± 14.43 HU, rMAE 1.51 ± 0.21%). The experiments prove the superior performance of the proposed method over the six innovative methods. Moreover, the proposed method can rapidly generate the pseudo CT images that are suitable for PET attenuation correction.
鉴于磁共振成像(MRI)信号与衰减值之间的复杂关系,混合正电子发射断层扫描(PET)/MRI系统中的衰减校正仍然是一项具有挑战性的任务。目前,现有方法要么耗时,要么需要足够的样本进行模型训练。本文提出了一种有效的方法,可利用有限的数据从T1加权和T2加权MRI数据预测伪计算机断层扫描(CT)图像。所提出的方法使用改进的邻域锚定回归(INAR)作为基线方法来预先计算投影矩阵,以灵活地预测伪CT图像块。采用了包括增强MR/CT数据集、学习MR图像的非线性描述符、分层搜索最近邻、数据驱动优化和多回归器集成等技术,以提高所提出方法的有效性。共有22名健康受试者参与了该研究。使用带有多回归器集成的INAR获得的伪CT图像,与真实CT图像相比,平均绝对误差(MAE)为92.73±14.86 HU,峰值信噪比为29.77±1.63 dB,皮尔逊线性相关系数为0.82±0.05,骰子相似系数为0.81±0.03,PET衰减校正中的相对平均绝对误差(rMAE)为1.30±0.20%。此外,我们提出的INAR方法在没有任何优化策略的情况下,仅使用7名受试者就能取得相当不错的结果(MAE为106.89±14.43 HU,rMAE为1.51±0.21%)。实验证明了所提出的方法优于六种创新方法。此外,所提出的方法可以快速生成适用于PET衰减校正的伪CT图像。