Suppr超能文献

基于新型对抗性语义结构深度学习的脑 PET/MRI 磁共振成像衰减校正。

Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI.

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.

Institute for Surgical Technology and Biomechanics, University of Bern, CH-3014, Bern, Switzerland.

出版信息

Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2746-2759. doi: 10.1007/s00259-019-04380-x. Epub 2019 Jul 1.

Abstract

OBJECTIVE

Quantitative PET/MR imaging is challenged by the accuracy of synthetic CT (sCT) generation from MR images. Deep learning-based algorithms have recently gained momentum for a number of medical image analysis applications. In this work, a novel sCT generation algorithm based on deep learning adversarial semantic structure (DL-AdvSS) is proposed for MRI-guided attenuation correction in brain PET/MRI.

MATERIALS AND METHODS

The proposed DL-AdvSS algorithm exploits the ASS learning framework to constrain the synthetic CT generation process to comply with the extracted structural features from CT images. The proposed technique was evaluated through comparison to an atlas-based sCT generation method (Atlas), previously developed for MRI-only or PET/MRI-guided radiation planning. Moreover, the commercial segmentation-based approach (Segm) implemented on the Philips TF PET/MRI system was included in the evaluation. Clinical brain studies of 40 patients who underwent PET/CT and MR imaging were used for the evaluation of the proposed method under a two-fold cross validation scheme.

RESULTS

The accuracy of cortical bone extraction and CT value estimation were investigated for the three different methods. Atlas and DL-AdvSS exhibited similar cortical bone extraction accuracy resulting in a Dice coefficient of 0.78 ± 0.07 and 0.77 ± 0.07, respectively. Likewise, DL-AdvSS and Atlas techniques performed similarly in terms of CT value estimation in the cortical bone region where a mean error (ME) of less than -11 HU was obtained. The Segm approach led to a ME of -1025 HU. Furthermore, the quantitative analysis of corresponding PET images using the three approaches assuming the CT-based attenuation corrected PET (PET) as reference demonstrated comparative performance of DL-AdvSS and Atlas techniques with a mean standardized uptake value (SUV) bias less than 4% in 63 brain regions. In addition, less that 2% SUV bias was observed in the cortical bone when using Atlas and DL-AdvSS approaches. However, Segm resulted in 14.7 ± 8.9% SUV underestimation in the cortical bone.

CONCLUSION

The proposed DL-AdvSS approach demonstrated competitive performance with respect to the state-of-the-art atlas-based technique achieving clinically tolerable errors, thus outperforming the commercial segmentation approach used in the clinic.

摘要

目的

基于磁共振图像的定量 PET/MR 成像受到合成 CT(sCT)生成准确性的限制。基于深度学习的算法最近在许多医学图像分析应用中得到了迅猛发展。在这项工作中,提出了一种基于深度学习对抗语义结构(DL-AdvSS)的新型 sCT 生成算法,用于脑 PET/MRI 中的 MRI 引导衰减校正。

材料和方法

所提出的 DL-AdvSS 算法利用 ASS 学习框架来约束合成 CT 生成过程,使其符合从 CT 图像中提取的结构特征。通过与以前为 MRI 或 PET/MRI 引导的放射治疗计划开发的基于图谱的 sCT 生成方法(Atlas)进行比较,对所提出的技术进行了评估。此外,还在飞利浦 TF PET/MRI 系统上实现的基于商业分割的方法(Segm)也包含在评估中。对 40 例接受 PET/CT 和 MR 成像的患者进行了临床脑部研究,在双折交叉验证方案下评估了该方法。

结果

对三种不同方法的皮质骨提取和 CT 值估计的准确性进行了研究。Atlas 和 DL-AdvSS 的皮质骨提取精度相似,Dice 系数分别为 0.78±0.07 和 0.77±0.07。同样,DL-AdvSS 和 Atlas 技术在皮质骨区域的 CT 值估计方面表现相似,得到的平均误差(ME)小于-11 HU。Segm 方法导致 ME 为-1025 HU。此外,使用三种方法对假设基于 CT 的衰减校正 PET(PET)作为参考的相应 PET 图像进行定量分析,结果表明,在 63 个脑区,DL-AdvSS 和 Atlas 技术的平均标准化摄取值(SUV)偏差小于 4%,性能相当。此外,当使用 Atlas 和 DL-AdvSS 方法时,皮质骨的 SUV 偏差小于 2%。然而,Segm 方法导致皮质骨 SUV 低估了 14.7±8.9%。

结论

所提出的 DL-AdvSS 方法在与基于图谱的最先进技术的竞争中表现出了有竞争力的性能,实现了临床可接受的误差,从而优于临床中使用的商业分割方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验