Suppr超能文献

黑色素瘤的“组学”方面:基因组、蛋白质组和代谢组生物标志物的异质性。

The "-OMICS" facet of melanoma: Heterogeneity of genomic, proteomic and metabolomic biomarkers.

机构信息

The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, United States; Interdisciplinary Melanoma Program, New York University School of Medicine, New York, NY, United States.

Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

出版信息

Semin Cancer Biol. 2019 Dec;59:165-174. doi: 10.1016/j.semcancer.2019.06.014. Epub 2019 Jul 8.

Abstract

In the recent decade, cutting edge molecular and proteomic analysis platforms revolutionized biomarkers discovery in cancers. Melanoma is the prototype with over 51,100 biomarkers discovered and investigated thus far. These biomarkers include tissue based tumor cell and tumor microenvironment biomarkers and circulating biomarkers including tumor DNA (cf-DNA), mir-RNA, proteins and metabolites. These biomarkers provide invaluable information for diagnosis, prognosis and play an important role in prediction of treatment response. In this review, we summarize the most recent discoveries in each of these biomarker categories. We will discuss the challenges in their implementation and standardization and conclude with some perspectives in melanoma biomarker research.

摘要

在最近的十年中,前沿的分子和蛋白质组学分析平台彻底改变了癌症标志物的发现。黑色素瘤是迄今为止发现和研究超过 51100 种标志物的原型。这些标志物包括基于组织的肿瘤细胞和肿瘤微环境标志物以及循环标志物,包括肿瘤 DNA(cf-DNA)、mir-RNA、蛋白质和代谢物。这些标志物为诊断、预后提供了宝贵的信息,并在预测治疗反应方面发挥了重要作用。在这篇综述中,我们总结了这些标志物类别中的最新发现。我们将讨论它们在实施和标准化方面的挑战,并对黑色素瘤标志物研究的一些观点进行总结。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验