a Department of Zoology, University of Delhi , Delhi , India.
Chronobiol Int. 2019 Sep;36(9):1268-1284. doi: 10.1080/07420528.2019.1637887. Epub 2019 Jul 12.
Under periodic day-night environment, most circadian functions maintain a close phase relationship relative to each other, suggesting a common circadian pacemaker control of different overt rhythms. In birds, this seems highly unlikely, given multioscillatory nature of the circadian pacemaker and downstream generation of several circadian behaviors. We hypothesized the dissociation of overt rhythms from circadian gene oscillations, if the two were loosely coupled, under an aperiodic light condition. We tested this in daily rhythms in singing, activity and clock gene expressions in adult male zebra finches () that were born and raised under the constant light (LL; 24L:0D), with controls on an LD cycle (12L: 12D). Particularly, we monitored daily pattern of singing and activity behavior, and measured 24 h mRNA expression of immediate early gene (), clock genes ( and ) and epigenetic marker genes ( and ) in the hypothalamus, and of clock genes and genes coding for the aromatase (), androgen receptor () and dopamine receptor () in the song control nuclei (Area X and HVC) and cerebellum (motor control region). We found persistence of daily rhythms in activity and singing in all birds under LD, but in only 70% (14/20) birds under LL; thus, both behaviors were arrhythmic in 30% (6/20) birds) under LL. The overall song quality was also declined under LL. The clock genes showed daily rhythms in the hypothalamus, song control nuclei (except in Area X) and cerebellum under LD, although with differences in peak expression times; however, there was loss of rhythmicity in clock genes (except in Area X and HVC) under LL. We also found daily mRNA rhythm in the Area X and cerebellum under LD. These results demonstrate for the first time the persistence of clock gene oscillations in the song control brain regions and show the dissociation of circadian behavior from genetic oscillations in relation to an imposed light environment.
在周期性的日夜环境下,大多数生理节律相对彼此保持着紧密的相位关系,这表明不同的显性节律受共同的生物钟起搏器控制。在鸟类中,鉴于生物钟起搏器的多震荡性质以及下游几种生理节律的产生,这种情况似乎极不可能。我们假设,如果两个时钟基因的震荡是松散耦合的,那么在非周期性的光照条件下,显性节律会与生物钟基因震荡分离。我们通过在恒定光照(24L:0D)下出生和长大的成年雄性斑胸草雀()的每日歌唱、活动和时钟基因表达的昼夜节律来检验这一假设,对照组为 LD 循环(12L:12D)。特别地,我们监测了歌唱和活动行为的每日模式,并测量了下丘脑即时早期基因()、时钟基因(和)和表观遗传标记基因(和)的 24 h mRNA 表达,以及在歌唱控制核(Area X 和 HVC)和小脑(运动控制区)中的时钟基因和编码芳香化酶()、雄激素受体()和多巴胺受体()的基因的表达。我们发现,在 LD 下所有鸟类的活动和歌唱都保持着每日节律,但在 LL 下只有 70%(14/20)的鸟类保持;因此,在 LL 下,30%(6/20)的鸟类的这两种行为都是无节律的。在 LL 下,整体歌唱质量也下降了。时钟基因在 LD 下的下丘脑、歌唱控制核(除 Area X 中的)和小脑表现出每日节律,尽管表达峰值时间不同;然而,在 LL 下,时钟基因(除 Area X 和 HVC 中的)失去了节律性。我们还发现 LD 下 Area X 和小脑中的每日 mRNA 节律。这些结果首次证明了在歌唱控制大脑区域中时钟基因震荡的持续存在,并表明与强制光照环境相关的生物钟行为与遗传震荡的分离。