Suppr超能文献

共生菌共享并不能预测袋鼠的宿主社会关系。

Commensal bacterial sharing does not predict host social associations in kangaroos.

机构信息

School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia.

School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia.

出版信息

J Anim Ecol. 2019 Nov;88(11):1696-1707. doi: 10.1111/1365-2656.13064. Epub 2019 Jul 29.

Abstract

Social network analysis has been postulated as a tool to study potential pathogen transmission in wildlife but is resource-intensive to quantify. Networks based on bacterial genotypes have been proposed as a cost-effective method for estimating social or transmission network based on the assumption that individuals in close contact will share commensal bacteria. However, the use of network analysis to study wild populations requires critical evaluation of the assumptions and parameters these models are founded on. We test (a) whether networks of commensal bacterial sharing are related to hosts' social associations and hence could act as a proxy for estimating transmission networks, (b) how the parameters chosen to define host associations and delineate bacterial genotypes impact inference and (c) whether these relationships change across time. We use stochastic simulations to evaluate how uncertainty in parameter choice affects network structure. We focused on a well-studied population of eastern grey kangaroos (Macropus giganteus), from Sundown National Park, Australia. Using natural markings, each individual was identified and its associations with other kangaroos recorded through direct field observations over 2 years to construct social networks. Faecal samples were collected, Escherichia coli was cultured and genotyped using BOX-PCR, and bacterial networks were constructed. Two individuals were connected in the bacterial network if they shared at least one E. coli genotype. We determined the capacity of bacterial networks to predict the observed social network structure in each year. We found little support for a relationship between social association and dyadic commensal bacterial similarity. Thresholds to determine host associations and similarity cut-off values used to define E. coli genotypes had important ramifications for inferring links between individuals. In fact, we found that inferences can show opposite patterns based on the chosen thresholds. Moreover, no similarity in overall bacterial network structure was detected between years. Although empirical disease transmission data are often unavailable in wildlife populations, both bacterial networks and social networks have limitations in representing the mode of transmission of a pathogen. Our results suggest that caution is needed when designing such studies and interpreting results.

摘要

社会网络分析被推测为一种研究野生动物中潜在病原体传播的工具,但量化它的方法需要耗费大量资源。基于细菌基因型的网络被提出作为一种经济有效的方法来估计社会或传播网络,其假设是密切接触的个体将共享共生细菌。然而,使用网络分析来研究野生动物种群需要对这些模型所基于的假设和参数进行批判性评估。我们检验了以下几点:(a)共生细菌共享网络是否与宿主的社会联系有关,因此可以作为估计传播网络的代理;(b)用于定义宿主联系和划定细菌基因型的参数选择如何影响推断;(c)这些关系是否随时间变化。我们使用随机模拟来评估参数选择的不确定性如何影响网络结构。我们专注于澳大利亚 Sundown 国家公园一个研究充分的东部灰袋鼠(Macropus giganteus)种群。使用自然标记,通过两年的直接实地观察记录每个个体与其它袋鼠的联系,构建社会网络。收集粪便样本,培养大肠杆菌并使用 BOX-PCR 进行基因分型,构建细菌网络。如果两个个体共享至少一种大肠杆菌基因型,则它们在细菌网络中连接。我们确定了细菌网络预测每年观察到的社会网络结构的能力。我们发现,社会联系与对偶共生细菌相似性之间几乎没有关系。确定宿主联系和相似性截断值来定义大肠杆菌基因型的阈值对推断个体之间的联系有重要影响。实际上,我们发现,根据选择的阈值,推断结果可能呈现相反的模式。此外,我们没有发现两年间细菌网络结构总体上存在相似性。尽管野生动物种群中通常缺乏经验性疾病传播数据,但细菌网络和社会网络在表示病原体传播模式方面都存在局限性。我们的研究结果表明,在设计此类研究和解释结果时需要谨慎。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验