Suppr超能文献

细胞核中的TARBP2驱动RNA剪接和衰变的致癌失调。

Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay.

作者信息

Fish Lisa, Navickas Albertas, Culbertson Bruce, Xu Yichen, Nguyen Hoang C B, Zhang Steven, Hochman Myles, Okimoto Ross, Dill Brian D, Molina Henrik, Najafabadi Hamed S, Alarcón Claudio, Ruggero Davide, Goodarzi Hani

机构信息

Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.

Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Mol Cell. 2019 Sep 5;75(5):967-981.e9. doi: 10.1016/j.molcel.2019.06.001. Epub 2019 Jul 9.

Abstract

Post-transcriptional regulation of RNA stability is a key step in gene expression control. We describe a regulatory program, mediated by the RNA binding protein TARBP2, that controls RNA stability in the nucleus. TARBP2 binding to pre-mRNAs results in increased intron retention, subsequently leading to targeted degradation of TARBP2-bound transcripts. This is mediated by TARBP2 recruitment of the mA RNA methylation machinery to its target transcripts, where deposition of mA marks influences the recruitment of splicing regulators, inhibiting efficient splicing. Interactions between TARBP2 and the nucleoprotein TPR then promote degradation of these TARBP2-bound transcripts by the nuclear exosome. Additionally, analysis of clinical gene expression datasets revealed a functional role for TARBP2 in lung cancer. Using xenograft mouse models, we find that TARBP2 affects tumor growth in the lung and that this is dependent on TARBP2-mediated destabilization of ABCA3 and FOXN3. Finally, we establish ZNF143 as an upstream regulator of TARBP2 expression.

摘要

RNA稳定性的转录后调控是基因表达控制中的关键步骤。我们描述了一种由RNA结合蛋白TARBP2介导的调控程序,该程序控制细胞核中的RNA稳定性。TARBP2与前体mRNA结合会导致内含子保留增加,随后导致与TARBP2结合的转录本被靶向降解。这是通过TARBP2将mA RNA甲基化机制招募到其靶转录本上介导的,其中mA标记的沉积影响剪接调节因子的招募,抑制有效剪接。然后,TARBP2与核蛋白TPR之间的相互作用促进核外泌体对这些与TARBP2结合的转录本的降解。此外,对临床基因表达数据集的分析揭示了TARBP2在肺癌中的功能作用。使用异种移植小鼠模型,我们发现TARBP2影响肺部肿瘤生长,并且这依赖于TARBP2介导的ABCA3和FOXN3的不稳定。最后,我们确定ZNF143是TARBP2表达的上游调节因子。

相似文献

1
Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay.
Mol Cell. 2019 Sep 5;75(5):967-981.e9. doi: 10.1016/j.molcel.2019.06.001. Epub 2019 Jul 9.
3
KSRP suppresses cell invasion and metastasis through miR-23a-mediated EGR3 mRNA degradation in non-small cell lung cancer.
Biochim Biophys Acta Gene Regul Mech. 2017 Oct;1860(10):1013-1024. doi: 10.1016/j.bbagrm.2017.08.005. Epub 2017 Aug 25.
4
Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins.
Nature. 2014 Sep 11;513(7517):256-60. doi: 10.1038/nature13466. Epub 2014 Jul 9.
5
TARBP2 promotes tumor angiogenesis and metastasis by destabilizing antiangiogenic factor mRNAs.
Cancer Sci. 2021 Mar;112(3):1289-1299. doi: 10.1111/cas.14820. Epub 2021 Feb 12.
6
KH-type splicing regulatory protein (KHSRP) contributes to tumorigenesis by promoting miR-26a maturation in small cell lung cancer.
Mol Cell Biochem. 2016 Nov;422(1-2):61-74. doi: 10.1007/s11010-016-2806-y. Epub 2016 Sep 19.
8
Multiple pathways are involved in the anoxia response of SKIP3 including HuR-regulated RNA stability, NF-kappaB and ATF4.
Oncogene. 2008 Jul 31;27(33):4532-43. doi: 10.1038/onc.2008.100. Epub 2008 Apr 14.

引用本文的文献

1
RNA splicing: Novel star in pulmonary diseases with a treatment perspective.
Acta Pharm Sin B. 2025 May;15(5):2301-2322. doi: 10.1016/j.apsb.2025.03.023. Epub 2025 Mar 13.
5
The role of N6-methyladenosine modification in tumor angiogenesis.
Front Oncol. 2024 Dec 3;14:1467850. doi: 10.3389/fonc.2024.1467850. eCollection 2024.
6
Integrated analysis of disulfidptosis-related genes SLC7A11, SLC3A2, RPN1 and NCKAP1 across cancers.
Discov Oncol. 2024 Nov 29;15(1):724. doi: 10.1007/s12672-024-01612-x.
8
A multiomics approach reveals RNA dynamics promote cellular sensitivity to DNA hypomethylation.
Sci Rep. 2024 Oct 29;14(1):25940. doi: 10.1038/s41598-024-77314-9.
9
Systematic identification of post-transcriptional regulatory modules.
Nat Commun. 2024 Sep 9;15(1):7872. doi: 10.1038/s41467-024-52215-7.

本文引用的文献

1
Alveolar injury and regeneration following deletion of ABCA3.
JCI Insight. 2017 Dec 21;2(24):97381. doi: 10.1172/jci.insight.97381.
3
mA modulates haematopoietic stem and progenitor cell specification.
Nature. 2017 Sep 14;549(7671):273-276. doi: 10.1038/nature23883. Epub 2017 Sep 6.
4
N-methyladenosine (mA) recruits and repels proteins to regulate mRNA homeostasis.
Nat Struct Mol Biol. 2017 Oct;24(10):870-878. doi: 10.1038/nsmb.3462. Epub 2017 Sep 4.
5
Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression.
Semin Cell Dev Biol. 2018 Mar;75:78-87. doi: 10.1016/j.semcdb.2017.08.053. Epub 2017 Sep 1.
7
RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding.
Nat Struct Mol Biol. 2017 Jul;24(7):561-569. doi: 10.1038/nsmb.3419. Epub 2017 Jun 5.
8
mA Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program.
Cancer Cell. 2017 Apr 10;31(4):591-606.e6. doi: 10.1016/j.ccell.2017.02.013. Epub 2017 Mar 23.
9
YPC-21661 and YPC-22026, novel small molecules, inhibit ZNF143 activity in vitro and in vivo.
Cancer Sci. 2017 May;108(5):1042-1048. doi: 10.1111/cas.13199. Epub 2017 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验