Suppr超能文献

水平回转器对 代谢物运输的影响及其对有机酸生成的影响的代谢组学分析。

Clinostat Rotation Affects Metabolite Transportation and Increases Organic Acid Production by , as Revealed by Differential Metabolomic Analysis.

机构信息

Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China.

Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China

出版信息

Appl Environ Microbiol. 2019 Aug 29;85(18). doi: 10.1128/AEM.01023-19. Print 2019 Sep 15.

Abstract

Contamination by fungi may pose a threat to the long-term operation of the International Space Station because fungi produce organic acids that corrode equipment and mycotoxins that harm human health. Microgravity is an unavoidable and special condition in the space station. However, the influence of microgravity on fungal metabolism has not been well studied. Clinostat rotation is widely used to simulate the microgravity condition in studies carried out on Earth. Here, we used metabolomics differential analysis to study the influence of clinostat rotation on the accumulation of organic acids and related biosynthetic pathways in ochratoxin A (OTA)-producing As a result, clinostat rotation did not affect fungal cell growth or colony appearance but significantly increased the accumulation of organic acids, particularly isocitric acid, citric acid, and oxalic acid, and OTA both inside cells and in the medium, as well as resulted in a much higher level of accumulation of some products inside than outside cells, indicating that the transport of these metabolites from the cell to the medium was inhibited. This finding corresponded to the change in the fatty acid composition of cell membranes and the reduced thickness of the cell walls and cell membranes. Amino acid and energy metabolic pathways, particularly the tricarboxylic acid cycle, were influenced the most during clinostat rotation compared to the effects of normal gravity on these pathways. Fungi are ubiquitous in nature and have the ability to corrode various materials by producing metabolites. Research on how the space station environment, especially microgravity, affects fungal metabolism is helpful to understand the role of fungi in the space station. This work provides insights into the mechanisms involved in the metabolism of the corrosive fungus under simulated microgravity conditions. Our findings have significance not only for preventing material corrosion but also for ensuring food safety, especially in the space environment.

摘要

真菌污染可能对国际空间站的长期运行构成威胁,因为真菌会产生腐蚀设备的有机酸和损害人类健康的霉菌毒素。微重力是空间站中不可避免的特殊条件。然而,微重力对真菌代谢的影响尚未得到很好的研究。旋摆旋转被广泛用于模拟地球上进行的研究中的微重力条件。在这里,我们使用代谢组学差异分析来研究旋摆旋转对产赭曲霉毒素 A (OTA)真菌积累有机酸和相关生物合成途径的影响。结果表明,旋摆旋转没有影响真菌细胞生长或菌落外观,但显著增加了有机酸,特别是异柠檬酸、柠檬酸和草酸的积累,以及细胞内和培养基中的 OTA 积累,并且导致细胞内某些产物的积累水平明显高于细胞外,表明这些代谢物从细胞向培养基的运输受到抑制。这一发现与细胞膜脂肪酸组成的变化以及细胞壁和细胞膜厚度的减小相对应。与正常重力对这些途径的影响相比,旋摆旋转对氨基酸和能量代谢途径的影响最大,尤其是三羧酸循环。与正常重力对这些途径的影响相比,旋摆旋转对氨基酸和能量代谢途径的影响最大,尤其是三羧酸循环。真菌在自然界中无处不在,具有通过产生代谢物腐蚀各种材料的能力。研究空间站环境,特别是微重力,如何影响真菌代谢有助于了解真菌在空间站中的作用。这项工作提供了对模拟微重力条件下腐蚀性真菌代谢机制的深入了解。我们的发现不仅对防止材料腐蚀具有重要意义,而且对确保食品安全,特别是在太空环境中具有重要意义。

相似文献

引用本文的文献

6
Colony growth and biofilm formation of under simulated microgravity.在模拟微重力条件下的菌落生长和生物膜形成。
Front Microbiol. 2022 Sep 23;13:975763. doi: 10.3389/fmicb.2022.975763. eCollection 2022.

本文引用的文献

6
Phenotypic Changes Exhibited by Cultured in Space.在太空培养所呈现的表型变化。
Front Microbiol. 2017 Aug 28;8:1598. doi: 10.3389/fmicb.2017.01598. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验