Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy.
Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy; Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy.
Int J Food Microbiol. 2019 Oct 2;306:108265. doi: 10.1016/j.ijfoodmicro.2019.108265. Epub 2019 Jul 10.
The use of yeast-derived volatile organic compounds (VOCs) represents a promising strategy for the biological control of various plant pathogens, including mycotoxin-producing fungi. Previous studies demonstrated the efficacy of the low-fermenting yeast Candida intermedia isolate 253 in reducing growth, sporulation, and ochratoxin A biosynthesis by Aspergillus carbonarius MPVA566. This study aimed to investigate whether the inhibitory effect of the yeast volatilome is solely attributable to 2-phenylethanol, its major component, or if a synergistic effect of all volatilome components is required to achieve an effective control of the fungal growth and metabolism. Microbiological methods, HPLC measurements and a UPLC-MS/MS approach were used to investigate the metabolic profile of A. carbonarius MPVA566 at different growing conditions: standard incubation (control), exposed to C. intermedia 253 volatilome, and incubation in the presence of 2-phenylethanol. Both yeast volatilome and 2-phenylethanol succeeded in the macroscopic inhibition of the radial mycelial growth, along with a significant reduction of ochratoxin A production. Functional classification of the fungal proteome identified in the diverse growing conditions revealed a different impact of both yeast VOCs and 2-phenylethanol exposure on the fungal proteome. Yeast VOCs target an array of metabolic routes of fungal system biology, including a marked reduction in protein biosynthesis, proliferative activity, mitochondrial metabolism, and particularly in detoxification of toxic substances. Exposure to 2-phenylethanol only partially mimicked the metabolic effects observed by the whole yeast volatilome, with protein biosynthesis and proliferative activity being reduced when compared with the control samples, but still far from the VOCs-exposed condition. This study represents the first investigation on the effects of yeast-derived volatilome and 2-phenylethanol on the metabolism of a mycotoxigenic fungus by means of proteomics analysis. CHEMICAL COMPOUNDS STUDIED OR USED IN THIS ARTICLE: 2-Phenylethanol (PubChem CID: 6054); ochratoxin-A (PubChem CID: 442530); sodium dodecyl sulfate (PubChem CID: 3423265); dithiothreitol (PubChem CID: 446094); phenylmethylsulfonyl fluoride (PubChem CID: 4784); iodoacetamide (PubChem CID: 3727); ammonium bicarbonate (PubChem CID: 14013); acetic acid (PubChem CID: 176); and acetonitrile (PubChem CID: 6342).
酵母源挥发性有机化合物(VOCs)的利用代表了一种有前途的策略,可以用于控制各种植物病原体,包括产霉菌素真菌。先前的研究表明,低发酵酵母 Candida intermedia 分离株 253 能够有效抑制 Aspergillus carbonarius MPVA566 的生长、孢子形成和赭曲霉毒素 A 生物合成。本研究旨在探讨酵母挥发物组的抑制作用是否仅归因于其主要成分 2-苯乙醇,还是需要所有挥发物组成分的协同作用才能有效控制真菌的生长和代谢。使用微生物学方法、HPLC 测量和 UPLC-MS/MS 方法研究了 A. carbonarius MPVA566 在不同生长条件下的代谢谱:标准孵育(对照)、暴露于 C. intermedia 253 挥发物组和在 2-苯乙醇存在下孵育。酵母挥发物组和 2-苯乙醇都成功地在宏观上抑制了径向菌丝的生长,并显著降低了赭曲霉毒素 A 的产生。在不同生长条件下鉴定的真菌蛋白质组的功能分类表明,酵母 VOCs 和 2-苯乙醇暴露对真菌蛋白质组的影响不同。酵母 VOCs 针对真菌系统生物学的一系列代谢途径,包括蛋白质生物合成、增殖活性、线粒体代谢的显著降低,特别是对有毒物质的解毒作用。暴露于 2-苯乙醇仅部分模拟了整个酵母挥发物组观察到的代谢效应,与对照样品相比,蛋白质生物合成和增殖活性降低,但仍远未达到 VOCs 暴露的条件。这项研究是首次通过蛋白质组学分析研究酵母源挥发物组和 2-苯乙醇对产霉菌素真菌代谢的影响。本文研究的化学物质或使用的化学物质:2-苯乙醇(PubChem CID:6054);赭曲霉毒素 A(PubChem CID:442530);十二烷基硫酸钠(PubChem CID:3423265);二硫苏糖醇(PubChem CID:446094);苯甲基磺酰氟(PubChem CID:4784);碘乙酰胺(PubChem CID:3727);碳酸氢铵(PubChem CID:14013);乙酸(PubChem CID:176);和乙腈(PubChem CID:6342)。