Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
J Immunol. 2019 Aug 15;203(4):1031-1043. doi: 10.4049/jimmunol.1900236. Epub 2019 Jul 12.
Alternative (M2)-polarized macrophages possess high capacities to produce specialized proresolving mediators (SPM; i.e., resolvins, protectins, and maresins) that play key roles in resolution of inflammation and tissue regeneration. Vacuolar (H)-ATPase (V-ATPase) is fundamental in inflammatory cytokine trafficking and secretion and was implicated in macrophage polarization toward the M2 phenotype, but its role in SPM production and lipid mediator biosynthesis in general is elusive. In this study, we show that V-ATPase activity is required for the induction of SPM-biosynthetic pathways in human M2-like monocyte-derived macrophages (MDM) and consequently for resolution of inflammation. Blockade of V-ATPase by archazolid during IL-4-induced human M2 polarization abrogated 15-lipoxygenase-1 expression and prevented the related biosynthesis of SPM in response to pathogenic , assessed by targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics. In classically activated proinflammatory M1-like MDM, however, the biosynthetic machinery for lipid mediator formation was independent of V-ATPase activity. Targeting V-ATPase in M2 influenced neither IL-4-triggered JAK/STAT6 nor the mTOR complex 1 signaling but strongly suppressed the ERK-1/2 pathway. Accordingly, the ERK-1/2 pathway contributes to 15-lipoxygenase-1 expression and SPM formation in M2-like MDM. Targeting V-ATPase in vivo delayed resolution of zymosan-induced murine peritonitis accompanied by decreased SPM levels without affecting proinflammatory leukotrienes or PGs. Together, our data propose that V-ATPase regulates 15-lipoxygenase-1 expression and consequent SPM biosynthesis involving ERK-1/2 during M2 polarization, implying a crucial role for V-ATPase in the resolution of inflammation.
替代(M2)极化的巨噬细胞具有产生专门的促解决介质(SPM;即 resolvins、protectins 和maresins)的高能力,这些介质在炎症消退和组织再生中发挥关键作用。液泡(H)-ATP 酶(V-ATPase)在炎症细胞因子的运输和分泌中起着基础性作用,并被牵连到巨噬细胞向 M2 表型极化,但它在 SPM 产生和一般脂质介质生物合成中的作用尚不清楚。在这项研究中,我们表明 V-ATPase 活性对于诱导人 M2 样单核细胞衍生的巨噬细胞(MDM)中的 SPM 生物合成途径以及随后的炎症消退是必需的。在 IL-4 诱导的人 M2 极化过程中,通过 archazolid 阻断 V-ATPase 会阻断 15-脂氧合酶-1 的表达,并阻止针对病原体的 SPM 的相关生物合成,通过靶向液相色谱-串联质谱法基于代谢脂质组学进行评估。然而,在经典激活的促炎 M1 样 MDM 中,脂质介质形成的生物合成机制独立于 V-ATPase 活性。在 M2 中靶向 V-ATPase 既不会影响 IL-4 触发的 JAK/STAT6 也不会影响 mTOR 复合物 1 信号,但会强烈抑制 ERK-1/2 途径。相应地,ERK-1/2 途径有助于 M2 样 MDM 中的 15-脂氧合酶-1 表达和 SPM 形成。在体内靶向 V-ATPase 会延迟酵母聚糖诱导的小鼠腹膜炎的消退,同时伴有 SPM 水平降低,而不影响促炎白三烯或 PG。总的来说,我们的数据表明,V-ATPase 在 M2 极化过程中调节 15-脂氧合酶-1 的表达和随后的 SPM 生物合成,涉及 ERK-1/2,这表明 V-ATPase 在炎症消退中起着至关重要的作用。