Department of Pharmacology, University of Washington, Seattle, WA 98195.
Department of Pharmacology, University of California, Irvine, CA 92697.
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):E11465-E11474. doi: 10.1073/pnas.1816614115. Epub 2018 Nov 19.
A-kinase anchoring proteins (AKAPs) shape second-messenger signaling responses by constraining protein kinase A (PKA) at precise intracellular locations. A defining feature of AKAPs is a helical region that binds to regulatory subunits (RII) of PKA. Mining patient-derived databases has identified 42 nonsynonymous SNPs in the PKA-anchoring helices of five AKAPs. Solid-phase RII binding assays confirmed that 21 of these amino acid substitutions disrupt PKA anchoring. The most deleterious side-chain modifications are situated toward C-termini of AKAP helices. More extensive analysis was conducted on a valine-to-methionine variant in the PKA-anchoring helix of AKAP18. Molecular modeling indicates that additional density provided by methionine at position 282 in the AKAP18γ isoform deflects the pitch of the helical anchoring surface outward by 6.6°. Fluorescence polarization measurements show that this subtle topological change reduces RII-binding affinity 8.8-fold and impairs cAMP responsive potentiation of L-type Ca currents in situ. Live-cell imaging of AKAP18γ V282M-GFP adducts led to the unexpected discovery that loss of PKA anchoring promotes nuclear accumulation of this polymorphic variant. Targeting proceeds via a mechanism whereby association with the PKA holoenzyme masks a polybasic nuclear localization signal on the anchoring protein. This led to the discovery of AKAP18ε: an exclusively nuclear isoform that lacks a PKA-anchoring helix. Enzyme-mediated proximity-proteomics reveal that compartment-selective variants of AKAP18 associate with distinct binding partners. Thus, naturally occurring PKA-anchoring-defective AKAP variants not only perturb dissemination of local second-messenger responses, but also may influence the intracellular distribution of certain AKAP18 isoforms.
A-激酶锚定蛋白(AKAPs)通过将蛋白激酶 A(PKA)约束在精确的细胞内位置来塑造第二信使信号反应。AKAP 的一个定义特征是一个螺旋区域,该区域与 PKA 的调节亚基(RII)结合。从患者来源的数据库中挖掘发现,五个 AKAP 的 PKA 锚定螺旋中有 42 个非同义 SNP。固相 RII 结合测定证实,其中 21 个氨基酸取代破坏了 PKA 锚定。最具破坏性的侧链修饰位于 AKAP 螺旋的 C 末端。对 AKAP18 的 PKA 锚定螺旋中的缬氨酸到蛋氨酸变体进行了更广泛的分析。分子建模表明,AKAP18γ 同工型中位置 282 的蛋氨酸提供的额外密度使螺旋锚定表面的螺距向外偏 6.6°。荧光偏振测量表明,这种微小的拓扑变化使 RII 结合亲和力降低 8.8 倍,并损害了原位 cAMP 响应增强的 L 型 Ca 电流。AKAP18γ V282M-GFP 加合物的活细胞成像导致了一个意想不到的发现,即 PKA 锚定的丧失促进了这种多态变体的核积累。靶向通过一种机制进行,其中与 PKA 全酶的关联掩盖了锚定蛋白上的多碱性核定位信号。这导致了 AKAP18ε 的发现:一种缺乏 PKA 锚定螺旋的纯核同工型。酶介导的邻近蛋白质组学揭示了 AKAP18 的区室选择性变体与不同的结合伴侣相关。因此,天然存在的 PKA 锚定缺陷 AKAP 变体不仅会扰乱局部第二信使反应的传播,还可能影响某些 AKAP18 同工型的细胞内分布。