Clark R W, Volpi M, Berlin R D
Department of Physiology, University of Connecticut Health Center, Farmington 06032.
Biochemistry. 1988 Feb 9;27(3):1025-33. doi: 10.1021/bi00403a027.
Carbamoylation and reductive methylation of tubulin have been shown previously to inhibit microtubule assembly, probably by attack on essential internal lysine residues [Mellado, W., Slebe, J., & Maccioni, R.B. (1982) Biochem. J. 203, 675-681; Szasz, J., Burns, R., & Sternlicht, H. (1982) J. Biol. Chem. 257, 3697-3704]. We show first that this inhibition is blocked by the presence of HCO3-/CO2 buffer at physiological concentrations during the carbamoylation or reductive methylation. Under conditions that block assembly, the amount of radiolabeled cyanate or formaldehyde incorporated by these reactions in the absence of HCO3-/CO2 was approximately four carbamoyl or five methyl groups in a ratio of approximately 1.7 alpha chain/beta chain. In the presence of HCO3-/CO2, the formaldehyde incorporation is decreased roughly 0.5 mol in each of the alpha and beta chains, and cyanate incorporation, roughly 1.0 mol/mol of alpha or beta monomer. These results are consistent with the hypothesis that CO2 competed with formaldehyde or cyanate for uncharged amino groups and led to the reversible formation of carbamates. The complete antagonism of the inhibition of microtubule assembly by reductive methylation by CO2, even though the number of methyl groups incorporated was reduced by only 0.5 mol/tubulin monomer, was consistent with the possibility that reductive methylation opened up additional residues for attack. Indeed, using an adaptation of the method of Gros et al. for measurement of carbamates [Gros, G., Forster, R.E., & Lin, L. (1976) J. Biol. Chem. 251, 4398-4407], we found that reductive methylation with 2 mM formaldehyde (assembly blocked) did not decrease carbamate formation (carbamate formation was inhibited at higher formaldehyde concentrations).(ABSTRACT TRUNCATED AT 250 WORDS)
先前已表明,微管蛋白的氨甲酰化和还原甲基化可抑制微管组装,可能是通过攻击关键的内部赖氨酸残基实现的[梅拉多,W.,斯莱贝,J.,& 马乔尼,R.B.(1982年)《生物化学杂志》203卷,675 - 681页;萨斯,J.,伯恩斯,R.,& 斯特恩利希特,H.(1982年)《生物化学杂志》257卷,3697 - 3704页]。我们首先表明,在氨甲酰化或还原甲基化过程中,生理浓度的HCO₃⁻/CO₂缓冲液的存在可阻止这种抑制作用。在阻止组装的条件下,在不存在HCO₃⁻/CO₂时,这些反应掺入的放射性标记氰酸盐或甲醛的量约为四个氨甲酰基或五个甲基,α链/β链的比例约为1.7。在存在HCO₃⁻/CO₂的情况下,α链和β链中甲醛的掺入量各自大致减少0.5摩尔,氰酸盐的掺入量,每摩尔α或β单体大致减少1.0摩尔。这些结果与以下假设一致:CO₂与甲醛或氰酸盐竞争不带电荷的氨基,并导致氨基甲酸盐的可逆形成。即使掺入的甲基数量仅减少0.5摩尔/微管蛋白单体,CO₂对还原甲基化抑制微管组装的完全拮抗作用,与还原甲基化使更多残基可供攻击的可能性是一致的。事实上,采用格罗斯等人测量氨基甲酸盐的方法的改进方法[格罗斯, G., 福斯特, R.E., & 林, L.(1976年)《生物化学杂志》251卷,4398 - 4407页],我们发现用2 mM甲醛进行还原甲基化(组装被阻止)不会减少氨基甲酸盐的形成(在较高甲醛浓度下氨基甲酸盐的形成受到抑制)。(摘要截短于250字)