Suppr超能文献

固体颗粒在球形弹性腔内的蠕动运动:II. 非对称运动。

Creeping motion of a solid particle inside a spherical elastic cavity: II. Asymmetric motion.

作者信息

Hoell Christian, Löwen Hartmut, Menzel Andreas M, Daddi-Moussa-Ider Abdallah

机构信息

Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.

出版信息

Eur Phys J E Soft Matter. 2019 Jul 16;42(7):89. doi: 10.1140/epje/i2019-11853-4.

Abstract

An analytical method is proposed for computing the low-Reynolds-number hydrodynamic mobility function of a small colloidal particle asymmetrically moving inside a large spherical elastic cavity, the membrane of which is endowed with resistance toward shear and bending. In conjunction with the results obtained in the first part (A. Daddi-Moussa-Ider, H. Löwen, S. Gekle, Eur. Phys. J. E 41, 104 (2018)), in which the axisymmetric motion normal to the surface of an elastic cavity is investigated, the general motion for an arbitrary force direction can now be addressed. The elastohydrodynamic problem is formulated and solved using the classic method of images through expressing the hydrodynamic flow fields as a multipole expansion involving higher-order derivatives of the free-space Green's function. In the quasi-steady limit, we demonstrate that the particle self-mobility function of a particle moving tangent to the surface of the cavity is larger than that predicted inside a rigid stationary cavity of equal size. This difference is justified by the fact that a stationary rigid cavity introduces additional hindrance to the translational motion of the encapsulated particle, resulting in a reduction of its hydrodynamic mobility. Furthermore, the motion of the cavity is investigated, revealing that the translational pair (composite) mobility, which linearly couples the velocity of the elastic cavity to the force exerted on the solid particle, is solely determined by membrane shear properties. Our analytical predictions are favorably compared with fully-resolved computer simulations based on a completed-double-layer boundary integral method.

摘要

本文提出了一种分析方法,用于计算在大型球形弹性腔内不对称运动的小胶体颗粒的低雷诺数流体动力学迁移率函数,该弹性腔的膜具有抗剪切和抗弯能力。结合第一部分(A. Daddi-Moussa-Ider、H. Löwen、S. Gekle,《欧洲物理杂志E》41, 104 (2018))中获得的结果,其中研究了垂直于弹性腔表面的轴对称运动,现在可以解决任意力方向的一般运动问题。通过将流体动力学流场表示为涉及自由空间格林函数高阶导数的多极展开,利用经典镜像法对弹性流体动力学问题进行了公式化和求解。在准稳态极限下,我们证明了与腔表面相切运动的颗粒的自迁移率函数大于在相同尺寸的刚性固定腔内预测的值。这种差异的原因是,固定的刚性腔对封装颗粒的平移运动引入了额外的阻碍,导致其流体动力学迁移率降低。此外,还研究了腔的运动,结果表明,将弹性腔的速度与施加在固体颗粒上的力线性耦合的平移对(复合)迁移率仅由膜的剪切特性决定。我们的分析预测与基于完全双层边界积分法的全分辨率计算机模拟结果进行了良好的比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验