Brun Antonio, Fernández Marinone Guido, Price Edwin R, Nell Lucas A, Simões Beatriz M V, Castellar Alexandre, Gontero-Fourcade Manuel, Cruz-Neto Ariovaldo P, Karasov William H, Caviedes-Vidal Enrique
Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, Argentina.
Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin.
J Morphol. 2019 Sep;280(9):1359-1369. doi: 10.1002/jmor.21037. Epub 2019 Jul 13.
Flying mammals present unique intestinal adaptations, such as lower intestinal surface area than nonflying mammals, and they compensate for this with higher paracellular absorption of glucose. There is no consensus about the mechanistic bases for this physiological phenomenon. The surface area of the small intestine is a key determinant of the absorptive capacity by both the transcellular and the paracellular pathways; thus, information about intestinal surface area and micro-anatomical structure can help explain differences among species in absorptive capacity. In order to elucidate a possible mechanism for the high paracellular nutrient absorption in bats, we performed a comparative analysis of intestinal villi architecture and enterocyte size and number in microchiropterans and rodents. We collected data from intestines of six bat species and five rodent species using hematoxylin and eosin staining and histological measurements. For the analysis we added measurements from published studies employing similar methodology, making in total a comparison of nine species each of rodents and bats. Bats presented shorter intestines than rodents. After correction for body size differences, bats had ~41% less nominal surface area (NSA) than rodents. Villous enhancement of surface area (SEF) was ~64% greater in bats than in rodents, mainly because of longer villi and a greater density of villi in bat intestines. Both taxa exhibited similar enterocyte diameter. Bats exceeded rodents by ~103% in enterocyte density per cm NSA, but they do not significantly differ in total number of enterocytes per whole animal. In addition, there is a correlation between SEF and clearance per cm NSA of L-arabinose, a nonactively transported paracellular probe. We infer that an increased enterocyte density per cm NSA corresponds to increased density of tight junctions per cm NSA, which provides a partial mechanistic explanation for understanding the high paracellular absorption observed in bats compared to nonflying mammals.
飞行哺乳动物呈现出独特的肠道适应性,比如其肠道表面积比非飞行哺乳动物小,它们通过更高的葡萄糖细胞旁吸收来弥补这一点。对于这种生理现象的机制基础尚无共识。小肠表面积是经细胞和细胞旁途径吸收能力的关键决定因素;因此,有关肠道表面积和微观解剖结构的信息有助于解释不同物种在吸收能力上的差异。为了阐明蝙蝠细胞旁营养物质高吸收的可能机制,我们对小型翼手目蝙蝠和啮齿动物的肠绒毛结构以及肠上皮细胞的大小和数量进行了比较分析。我们使用苏木精和伊红染色及组织学测量方法,从六种蝙蝠和五种啮齿动物的肠道中收集数据。为进行分析,我们添加了采用类似方法的已发表研究中的测量数据,总共对九种啮齿动物和九种蝙蝠进行了比较。蝙蝠的肠道比啮齿动物短。校正体型差异后,蝙蝠的名义表面积(NSA)比啮齿动物少约41%。蝙蝠的绒毛表面积增强因子(SEF)比啮齿动物大64%左右,这主要是因为蝙蝠肠道中的绒毛更长且绒毛密度更高。两个类群的肠上皮细胞直径相似。每平方厘米NSA的肠上皮细胞密度,蝙蝠比啮齿动物高出约103%,但每只动物的肠上皮细胞总数并无显著差异。此外,L-阿拉伯糖(一种非主动转运的细胞旁探针)的SEF与每厘米NSA的清除率之间存在相关性。我们推断,每平方厘米NSA肠上皮细胞密度的增加对应于每平方厘米NSA紧密连接密度的增加,这为理解蝙蝠与非飞行哺乳动物相比所观察到的高细胞旁吸收提供了部分机制解释。