Suppr超能文献

采用新型电极材料的电化学高级氧化工艺对垃圾渗滤液纳滤浓缩液的矿化和可生物降解性的提升

Electrochemical advanced oxidation processes using novel electrode materials for mineralization and biodegradability enhancement of nanofiltration concentrate of landfill leachates.

机构信息

IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092, Tunis, Tunisia; Université de Carthage, Institut National des Sciences Appliquées et de Technologie, Laboratoire d'Echo-Chimie, 1080, Tunis, Tunisia.

IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Laboratoire Géomatériaux et Environnement, LGE - Université Paris-Est, EA 4508, UPEM, 77454, Marne-la-Vallée, France.

出版信息

Water Res. 2019 Oct 1;162:446-455. doi: 10.1016/j.watres.2019.07.005. Epub 2019 Jul 5.

Abstract

The objective of this study was to implement electrochemical advanced oxidation processes (EAOPs) for mineralization and biodegradability enhancement of nanofiltration (NF) concentrate from landfill leachate initially pre-treated in a membrane bioreactor (MBR). Raw carbon felt (CF) or FeFe layered double hydroxides-modified CF were used for comparing the efficiency of homogeneous and heterogeneous electro-Fenton (EF), respectively. The highest mineralization rate was obtained by heterogeneous EF: 96% removal of dissolved organic carbon (DOC) was achieved after 8 h of electrolysis at circumneutral initial pH (pH = 7.9) and at 8.3 mA cm. However, the most efficient treatment strategy appeared to be heterogeneous EF at 4.2 mA cm combined with anodic oxidation using TiO anode (energy consumption = 0.11 kWh g of DOC removed). Respirometric analyses under similar conditions than in the real MBR emphasized the possibility to recirculate the NF retentate towards the MBR after partial mineralization by EAOPs in order to remove the residual biodegradable by-products and improve the global cost effectiveness of the process. Further analyses were also performed in order to better understand the fate of organic and inorganic species during the treatment, including acute toxicity tests (Microtox), characterization of dissolved organic matter by three-dimensional fluorescence spectroscopy, evolution of inorganic ions (ClO, NH and NO) and identification/quantification of degradation by-products such as carboxylic acids. The obtained results emphasized the interdependence between the MBR process and EAOPs in a combined treatment strategy. Improving the retention in the MBR of colloidal proteins would improve the effectiveness of EAOPs because such compounds were identified as the most refractory. Enhanced nitrification would be also required in the MBR because of the release of NH from mineralization of refractory organic nitrogen during EAOPs.

摘要

本研究的目的是在膜生物反应器(MBR)预处理后,对垃圾渗滤液纳滤(NF)浓缩液进行电化学高级氧化处理(EAOPs),以实现其矿化和可生物降解性的提高。分别使用原始碳纤维毡(CF)或铁铁层状双氢氧化物修饰的 CF 来比较均相和非均相电芬顿(EF)的效率。在中性初始 pH 值(pH = 7.9)和 8.3 mA cm 条件下进行 8 小时电解,非均相 EF 获得了最高的矿化率:溶解有机碳(DOC)去除率达到 96%。然而,最有效的处理策略似乎是在 4.2 mA cm 条件下结合使用 TiO 阳极进行阳极氧化的非均相 EF(能耗 = 0.11 kWh g 的 DOC 去除)。在与真实 MBR 相似的条件下进行的呼吸测定分析强调了在 EAOPs 部分矿化后将 NF 浓缩液回流至 MBR 的可能性,以便去除残留的可生物降解副产物并提高该过程的整体成本效益。还进行了进一步的分析,以便更好地了解处理过程中有机和无机物质的命运,包括急性毒性测试(Microtox)、三维荧光光谱法对溶解有机物的表征、无机离子(ClO、NH 和 NO)的演变以及降解副产物(如羧酸)的鉴定/定量。获得的结果强调了在组合处理策略中 MBR 工艺和 EAOPs 的相互依赖性。通过提高 MBR 中胶体蛋白质的截留率,可以提高 EAOPs 的效果,因为这些化合物被认为是最难处理的。由于 EAOPs 过程中难处理的有机氮矿化释放 NH,MBR 中还需要增强硝化作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验