Gull Fatima, Riaz Rehana, Ansari Komal, Atiq Haleema
Department of Physics, Faculty of Sciences, International Islamic University, Islamabad, Pakistan.
Sci Rep. 2024 Sep 18;14(1):21828. doi: 10.1038/s41598-024-60258-5.
Water scarcity and pollution has increased the need for innovative and effective waste water treatment methods. The presented study aims to tackle this difficulty by synthesizing zinc oxide (ZnO) and nickel (Ni) doped ZnO to improve their photo catalytic capacity. This study examines wastewater treatment and organic pollutant breakdown using nanotechnology. The annealing increases photo catalytic activity by 65%, thereby enhancing efficiency. XRD shows that annealing decreased the average crystal size of pure ZnO and nickel doped ZnO (Ni:ZnO) i.e., for pure ZnO average crystal size is decreased from 23.90 to 20.90 nm and for Ni:ZnO, 34.39-28.65 nm. SEM shows that un annealed samples have agglomerates, while annealed samples are quasi-spherical. Using diffuse reflectance spectroscopy (DRS), the study examines how annealing affects optical band gap. Annealed Ni:ZnO has a band gap of 3.09 eV, which is smaller as compared to un annealed Ni:ZnO (3.18 e V). Similarly, the decline in energy band gap is observed for pure ZnO too. This study highlights the significant capacity of Ni:ZnO, for un annealed and annealed synthesis, to effectively meet the urgent requirements for waste water treatment. The extensive research conducted in this work enhances our comprehension of photo catalytic materials and underscores its potential for practical implementation in addressing waste water-related environmental issues.
水资源短缺和污染增加了对创新且有效的废水处理方法的需求。本研究旨在通过合成氧化锌(ZnO)和镍(Ni)掺杂的ZnO来提高其光催化能力,从而解决这一难题。本研究考察了利用纳米技术进行废水处理和有机污染物分解的情况。退火使光催化活性提高了65%,从而提高了效率。X射线衍射(XRD)表明,退火减小了纯ZnO和镍掺杂ZnO(Ni:ZnO)的平均晶体尺寸,即对于纯ZnO,平均晶体尺寸从23.90纳米减小到20.90纳米,对于Ni:ZnO,从34.39纳米减小到28.65纳米。扫描电子显微镜(SEM)显示,未退火的样品有团聚体,而退火后的样品呈准球形。利用漫反射光谱(DRS),该研究考察了退火如何影响光学带隙。退火后的Ni:ZnO的带隙为3.09电子伏特,与未退火的Ni:ZnO(3.18电子伏特)相比更小。同样,纯ZnO的能带隙也出现了下降。本研究突出了Ni:ZnO在未退火和退火合成时有效满足废水处理迫切需求的显著能力。这项工作中进行的广泛研究增进了我们对光催化材料的理解,并强调了其在解决与废水相关的环境问题中的实际应用潜力。