Suppr超能文献

贝叶斯方法在将不同类型的生物医学知识库整合到精准医学临床决策支持信息检索系统中的应用。

Bayesian approach to incorporating different types of biomedical knowledge bases into information retrieval systems for clinical decision support in precision medicine.

机构信息

Department of Computer Science, Wayne State University, Detroit, MI 48202, USA.

出版信息

J Biomed Inform. 2019 Oct;98:103238. doi: 10.1016/j.jbi.2019.103238. Epub 2019 Jul 10.

Abstract

By providing clinicians with information regarding treatment options for molecular sub-types of complex diseases with genetic origin, such as cancer, information retrieval (IR) systems play an important role in precision medicine. In this paper, we propose Bayesian Precision Medicine (BPM), a novel probabilistic framework for query expansion in information retrieval systems for Clinical Decision Support (CDS) in Precision Medicine (PM). Such systems can assist clinicians with selecting personalized treatment of complex diseases based on the patients' genomic data, such as gene mutations. In particular, we focus on a clinical decision support scenario in which clinicians provide two types of information in their queries: (1) short description of a patient's case, which may contain information regarding the type of cancer that a patient has as well as symptoms and demographics, and (2) gene mutations, which may contain gene names, mutation code and type of mutation. The goal of an IR system in this scenario is to rank biomedical articles from a large collection, such as the MEDLINE, based on their relevance to the provided query. One of the main challenges faced by IR systems in this scenario is semantic matching of heterogeneous information (gene names, medical terminology and other query keywords) in queries and relevant biomedical articles. To address this challenge, we propose a probabilistic framework that enables mapping gene mutations provided in a given query onto the biomedical concepts that are related to the entire query and can be effectively utilized for query expansion. The BPM obtains candidate query expansion concepts from biomedical knowledge bases, the Unified Medical Language System (UMLS) and the Drug-Gene Interaction Database (DGIdb), as well as the top-ranked MEDLINE articles retrieved for the original query. The BPM then utilizes information from the Catalog of Somatic Mutations in Cancer (COSMIC) and co-occurrence statistics in MEDLINE to assess the relatedness of candidate query expansion concepts to gene mutations and other information provided in a query. Experimental evaluation of the BPM was conducted on a large subset of MEDLINE articles as well as abstracts from the American Association for Cancer Research (AACR) and American Society of Clinical Oncology (ASCO) proceedings. Experimental results on a publicly available benchmark provided by the 2017 TREC precision medicine track indicate that the proposed probabilistic framework is effective at utilizing both genomic and textual information in queries to improve the accuracy of IR systems for CDS in PM through query expansion.

摘要

通过为临床医生提供有关具有遗传起源的复杂疾病(如癌症)的分子亚型的治疗选择信息,信息检索 (IR) 系统在精准医学中发挥着重要作用。在本文中,我们提出了贝叶斯精准医学 (BPM),这是一种用于临床决策支持 (CDS) 在精准医学 (PM) 中的信息检索系统中的查询扩展的新型概率框架。此类系统可以帮助临床医生根据患者的基因组数据(如基因突变)为复杂疾病选择个性化治疗。特别是,我们专注于临床决策支持场景,在该场景中,临床医生在查询中提供两种类型的信息:(1) 患者病例的简短描述,其中可能包含患者所患癌症的类型以及症状和人口统计学信息,以及 (2) 基因突变,其中可能包含基因名称、突变代码和突变类型。在这种情况下,IR 系统的目标是根据与提供的查询的相关性对来自大型集合(如 MEDLINE)的生物医学文章进行排名。在这种情况下,IR 系统面临的主要挑战之一是查询和相关生物医学文章中异构信息(基因名称、医学术语和其他查询关键字)的语义匹配。为了解决这个挑战,我们提出了一个概率框架,该框架能够将给定查询中提供的基因突变映射到与整个查询相关的生物医学概念上,并可有效地用于查询扩展。BPM 从生物医学知识库、统一医学语言系统 (UMLS) 和药物-基因相互作用数据库 (DGIdb) 以及为原始查询检索的排名最高的 MEDLINE 文章中获取候选查询扩展概念。然后,BPM 利用来自癌症体细胞突变目录 (COSMIC) 的信息和 MEDLINE 中的共现统计数据来评估候选查询扩展概念与基因突变和查询中提供的其他信息的相关性。我们在 MEDLINE 的一个大数据集以及美国癌症研究协会 (AACR) 和美国临床肿瘤学会 (ASCO) 会议的摘要上对 BPM 进行了实验评估。在 2017 年 TREC 精准医学跟踪提供的公开基准测试上的实验结果表明,所提出的概率框架能够有效地利用查询中的基因组和文本信息,通过查询扩展提高 CDS 在 PM 中的 IR 系统的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验