Suppr超能文献

基于共词分析和布谷鸟搜索的精准医学临床决策支持改进的 BM25 算法。

An improved BM25 algorithm for clinical decision support in Precision Medicine based on co-word analysis and Cuckoo Search.

机构信息

School of Information Management, Nanjing University, Nanjing, 210023, China.

Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing, 210023, China.

出版信息

BMC Med Inform Decis Mak. 2021 Mar 2;21(1):81. doi: 10.1186/s12911-021-01454-5.

Abstract

BACKGROUND

Retrieving gene and disease information from a vast collection of biomedical abstracts to provide doctors with clinical decision support is one of the important research directions of Precision Medicine.

METHOD

We propose a novel article retrieval method based on expanded word and co-word analyses, also conducting Cuckoo Search to optimize parameters of the retrieval function. The main goal is to retrieve the abstracts of biomedical articles that refer to treatments. The methods mentioned in this manuscript adopt the BM25 algorithm to calculate the score of abstracts. We, however, propose an improved version of BM25 that computes the scores of expanded words and co-word leading to a composite retrieval function, which is then optimized using the Cuckoo Search. The proposed method aims to find both disease and gene information in the abstract of the same biomedical article. This is to achieve higher relevance and hence score of articles. Besides, we investigate the influence of different parameters on the retrieval algorithm and summarize how they meet various retrieval needs.

RESULTS

The data used in this manuscript is sourced from medical articles presented in Text Retrieval Conference (TREC): Clinical Decision Support (CDS) Tracks of 2017, 2018, and 2019 in Precision Medicine. A total of 120 topics are tested. Three indicators are employed for the comparison of utilized methods, which are selected among the ones based only on the BM25 algorithm and its improved version to conduct comparable experiments. The results showed that the proposed algorithm achieves better results.

CONCLUSION

The proposed method, an improved version of the BM25 algorithm, utilizes both co-word implementation and Cuckoo Search, which has been verified achieving better results on a large number of experimental sets. Besides, a relatively simple query expansion method is implemented in this manuscript. Future research will focus on ontology and semantic networks to expand the query vocabulary.

摘要

背景

从大量生物医学文摘中检索基因和疾病信息,为医生提供临床决策支持是精准医学的重要研究方向之一。

方法

我们提出了一种基于扩展词和共词分析的新的文章检索方法,并采用布谷鸟搜索算法优化检索函数的参数。主要目标是检索生物医学文章的摘要,这些摘要涉及治疗方法。本文中提到的方法采用 BM25 算法计算摘要的得分。然而,我们提出了一种改进的 BM25 算法,计算扩展词和共词的得分,从而得到一个组合的检索函数,然后使用布谷鸟搜索算法对其进行优化。所提出的方法旨在在同一生物医学文章的摘要中找到疾病和基因信息。这是为了实现更高的相关性和因此文章的得分。此外,我们研究了不同参数对检索算法的影响,并总结了它们如何满足各种检索需求。

结果

本文使用的数据来自于 2017、2018 和 2019 年文本检索会议(TREC):临床决策支持(CDS)Tracks 中的医学文章。共测试了 120 个主题。采用了仅基于 BM25 算法及其改进版本的三种指标进行比较实验。结果表明,所提出的算法取得了更好的结果。

结论

所提出的方法是 BM25 算法的改进版本,它利用共词实现和布谷鸟搜索,在大量实验集上得到了验证,取得了更好的结果。此外,本文实现了一种相对简单的查询扩展方法。未来的研究将集中于本体和语义网络,以扩展查询词汇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62b/7927407/ce84f2f8ba79/12911_2021_1454_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验