Department of Plastics Engineering and Nanomanufacturing Center, University of Massachusetts, Lowell, MA, 01854, United States.
Department of Biological Sciences, University of Massachusetts, Lowell, MA, 01854, United States.
Colloids Surf B Biointerfaces. 2019 Oct 1;182:110348. doi: 10.1016/j.colsurfb.2019.110348. Epub 2019 Jul 8.
Bioimaging probes incorporating quantum dots (QDs) are important for identifying organelles and monitoring their movement/location in living cells. Organelle specificity can be accomplished by functionalizing probe surfaces with chemical groups that can react with antibodies capable of targeting specific organelle-protein epitopes. Here, such a bioprobe is generated by encapsulating ZnS-capped CdSe QDs within polystyrene (PS) nanocolloids via Pickering miniemulsion using laponite nanoclay platelets as solid-stabilizers. The surfaces of these platelets are modified with aminopropyltriethoxysilane (APTES), and biotinylated by reacting sulfo-NHS-Biotin via the APTES amine group. Surface functionalization and bioconjugation are confirmed using X-ray photoelectron spectroscopy. The number of sites available on Streptavidin for Biotin binding is determined using a competitive HABA assay to optimize the bioconjugation protocol. The PS-encapsulated QDs (PS-QDs) nanocolloids are 50-200 nm in diameter and colloidally stable, as evidenced by transmission electron microscopy and ζ-potential measurements, respectively. Spherical particle shape is confirmed by scanning electron microscopy. Transmission electron microscopy also showed the nanoclay platelets on the surface of QD-encapsulating latex particles. The PS-QDs particles are easily dispersed in water and exhibit long-term photostability over various conditions. Cell viability of >95% is observed for NIH-3T3 cells after 72-h exposure to PS-QDs nanocolloids, with no cytotoxicity to living cells, even at 0.1 mg mL. NIH-3T3 cellular uptake and internalization are confirmed by confocal microscopy, with PS-QDs fluorescence within cells remaining high even after 24-h exposure, demonstrating the applicability of PS-QDs nanocolloids as long-lived fluorescent bioprobes for in vitro intracellular imaging.
将量子点 (QD) 结合的生物成像探针对于识别细胞器并监测其在活细胞中的运动/位置非常重要。通过用能够与靶向特定细胞器蛋白表位的抗体反应的化学基团对探针表面进行功能化,可以实现细胞器特异性。在这里,通过在Pickering 微乳液中使用纳米级粘土片作为固体稳定剂,将 ZnS 包覆的 CdSe QD 封装在聚苯乙烯 (PS) 纳米胶体中来生成这种生物探针。这些薄片的表面用氨丙基三乙氧基硅烷 (APTES) 进行修饰,并通过 APTES 胺基与磺基-NHS-生物素反应进行生物素化。使用 X 射线光电子能谱确认表面功能化和生物共轭。使用竞争 HABA 测定法确定链霉亲和素上用于生物素结合的可用位点数,以优化生物共轭方案。PS 包封的 QD(PS-QD)纳米胶体的直径为 50-200nm,并且分别通过透射电子显微镜和 ζ-电势测量证明胶体稳定。通过扫描电子显微镜确认球形颗粒形状。透射电子显微镜还显示了 QD 包封的乳胶颗粒表面上的纳米级粘土薄片。PS-QD 颗粒在水中容易分散,并在各种条件下表现出长期的光稳定性。NIH-3T3 细胞在暴露于 PS-QD 纳米胶体 72 小时后,细胞存活率>95%,即使在 0.1mg/mL 时,对活细胞也没有细胞毒性。通过共焦显微镜证实了 NIH-3T3 细胞的摄取和内化,即使在 24 小时暴露后,细胞内的 PS-QD 荧光仍然很高,证明 PS-QD 纳米胶体作为用于体外细胞内成像的长寿命荧光生物探针的适用性。