Suppr超能文献

Activated quantum diffusion in a periodic potential above the crossover temperature.

作者信息

Ianconescu Reuven, Pollak Eli

机构信息

Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovoth, Israel.

出版信息

J Chem Phys. 2019 Jul 14;151(2):024703. doi: 10.1063/1.5100010.

Abstract

The recently improved Pollak, Grabert, and Hänggi (PGH) turnover theory for activated surface diffusion, including finite barrier effects, is extended and studied in the quantum domain. Analytic expressions are presented for the diffusion coefficient, escape rate, hopping distribution, and mean squared path length of particles initially trapped in one of the wells of a periodic potential, moving under the influence of a frictional and Gaussian random force. Tunneling is included by assuming incoherent quantum hopping at temperatures which are above the crossover temperature between deep tunneling and thermal activation. In the improved version of PGH theory as applied to activated surface diffusion, the potential governing the motion of the unstable mode remains periodic but with a scaled mass which increases with the friction strength. Application of the theory to a periodic cosine potential demonstrates that in the weak damping regime quantum diffusion is slower than classical diffusion due to above barrier quantum reflection which significantly shortens the mean squared path length as compared to the classical result. Finite barrier corrections increase this quantum suppression of diffusion or, equivalently, the inverse isotope effect, whereby the diffusion is faster for a heavier mass.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验