Suppr超能文献

存在指数记忆摩擦时克莱默斯周转理论的一项研究。

A study of Kramers' turnover theory in the presence of exponential memory friction.

作者信息

Ianconescu Reuven, Pollak Eli

机构信息

Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovoth, Israel.

出版信息

J Chem Phys. 2015 Sep 14;143(10):104104. doi: 10.1063/1.4929709.

Abstract

Originally, the challenge of solving Kramers' turnover theory was limited to Ohmic friction, or equivalently, motion of the escaping particle governed by a Langevin equation. Mel'nikov and Meshkov [J. Chem. Phys. 85, 1018 (1986)] (MM) presented a solution valid for Ohmic friction. The turnover theory was derived more generally and for memory friction by Pollak, Grabert, and Hänggi [J. Chem. Phys. 91, 4073 (1989)] (PGH). Mel'nikov proceeded to also provide finite barrier corrections to his theory [Phys. Rev. E 48, 3271 (1993)]. Finite barrier corrections were derived only recently within the framework of PGH theory [E. Pollak and R. Ianconescu, J. Chem. Phys. 140, 154108 (2014)]. A comprehensive comparison between MM and PGH theories including finite barrier corrections and using Ohmic friction showed that the two methods gave quantitatively similar results and were in quantitative agreement with numerical simulation data. In the present paper, we extend the study of the turnover theories to exponential memory friction. By comparing with numerical simulation, we find that PGH theory is rather accurate, even in the strong friction long memory time limit, while MM theory fails. However, inclusion of finite barrier corrections to PGH theory leads to failure in this limit. The long memory time invalidates the fundamental assumption that consecutive traversals of the well are independent of each other. Why PGH theory without finite barrier corrections remains accurate is a puzzle.

摘要

最初,解决克莱默斯跃迁理论的挑战仅限于欧姆摩擦,或者等效地说,逃逸粒子的运动由朗之万方程描述。梅尔尼科夫和梅什科夫[《化学物理杂志》85, 1018 (1986)](MM)提出了一个适用于欧姆摩擦的解决方案。跃迁理论由波拉克、格拉伯特和亨吉[《化学物理杂志》91, 4073 (1989)](PGH)更普遍地推导出来,适用于记忆摩擦。梅尔尼科夫随后也对他的理论进行了有限势垒修正[《物理评论E》48, 3271 (1993)]。有限势垒修正直到最近才在PGH理论框架内推导出来[E. 波拉克和R. 扬科内斯库,《化学物理杂志》140, 154108 (2014)]。对MM和PGH理论进行的全面比较,包括有限势垒修正并使用欧姆摩擦,结果表明这两种方法给出了定量相似的结果,并且与数值模拟数据在定量上一致。在本文中,我们将跃迁理论的研究扩展到指数记忆摩擦。通过与数值模拟比较,我们发现PGH理论相当准确,即使在强摩擦长记忆时间极限下也是如此,而MM理论则失效。然而,对PGH理论包含有限势垒修正会导致在这个极限下失效。长记忆时间使阱的连续穿越相互独立这一基本假设无效。为什么没有有限势垒修正的PGH理论仍然准确是一个谜题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验