Suppr超能文献

相干最大化正则化:一种用于研究两个数据集之间神经元相互作用的新工具。

Canonical maximization of coherence: A novel tool for investigation of neuronal interactions between two datasets.

机构信息

Dept of Statistics, Informatics and Mathematics, Public University of Navarre, Pamplona, Spain; Machine Learning Group, EE & Computer Science Faculty, TU-Berlin, Germany.

Dept. of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

Neuroimage. 2019 Nov 1;201:116009. doi: 10.1016/j.neuroimage.2019.116009. Epub 2019 Jul 11.

Abstract

Synchronization between oscillatory signals is considered to be one of the main mechanisms through which neuronal populations interact with each other. It is conventionally studied with mass-bivariate measures utilizing either sensor-to-sensor or voxel-to-voxel signals. However, none of these approaches aims at maximizing synchronization, especially when two multichannel datasets are present. Examples include cortico-muscular coherence (CMC), cortico-subcortical interactions or hyperscanning (where electroencephalographic EEG/magnetoencephalographic MEG activity is recorded simultaneously from two or more subjects). For all of these cases, a method which could find two spatial projections maximizing the strength of synchronization would be desirable. Here we present such method for the maximization of coherence between two sets of EEG/MEG/EMG (electromyographic)/LFP (local field potential) recordings. We refer to it as canonical Coherence (caCOH). caCOH maximizes the absolute value of the coherence between the two multivariate spaces in the frequency domain. This allows very fast optimization for many frequency bins. Apart from presenting details of the caCOH algorithm, we test its efficacy with simulations using realistic head modelling and focus on the application of caCOH to the detection of cortico-muscular coherence. For this, we used diverse multichannel EEG and EMG recordings and demonstrate the ability of caCOH to extract complex patterns of CMC distributed across spatial and frequency domains. Finally, we indicate other scenarios where caCOH can be used for the extraction of neuronal interactions.

摘要

振荡信号的同步被认为是神经元群体相互作用的主要机制之一。它通常通过使用传感器到传感器或体素到体素信号的质量双变量测量来研究。然而,这些方法都没有旨在最大化同步,特别是当存在两个多通道数据集时。例如皮质-肌肉相干性 (CMC)、皮质下相互作用或超扫描 (其中同时从两个或更多个体记录脑电图 EEG/脑磁图 MEG 活动)。对于所有这些情况,都希望有一种方法可以找到两个空间投影来最大化同步的强度。在这里,我们提出了一种用于最大化两组 EEG/MEG/EMG(肌电图)/LFP(局部场电位)记录之间相干性的方法。我们称之为规范相干性 (caCOH)。caCOH 最大化了频域中两个多元空间之间相干性的绝对值。这允许对许多频带来进行非常快速的优化。除了介绍 caCOH 算法的细节外,我们还使用基于现实头部建模的模拟来测试其功效,并重点介绍 caCOH 在检测皮质-肌肉相干性中的应用。为此,我们使用了各种多通道 EEG 和 EMG 记录,并证明了 caCOH 提取分布在空间和频率域的复杂 CMC 模式的能力。最后,我们指出了 caCOH 可用于提取神经元相互作用的其他情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验